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fMRI analysis

A typical experiment is designed to have the subject perform:
 a task of interest (e.g. read a word)
 a control task (e.g. read a nonsense word)

introduction : classifier experiments : SVDM 
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fMRI analysis

 The goal is to find voxels that match the reference
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fMRI analysis

This is done for each voxel in the brain
 yields an image with the matching score for each voxel
 that image is thresholded leaving only significant matches

statistical parametric map (SPM)
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fMRI analysis

This is done for each voxel in the brain
 yields an image with the matching score for each voxel
 that image is thresholded leaving only significant matches

statistical parametric map (SPM)

a.k.a. BRAIN BLOBS
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fMRI analysis

SPM as an instrument
 identifies voxels more active in task than in control
 tests statistical significance of what was identified
 location

“which voxels are more active in task than in control images?”
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fMRI analysis

SPM as an instrument
 identifies voxels more active in task than in control
 tests statistical significance of what was identified
 location

“which voxels are more active in task than in control images?”

 location
“is the location of active voxels reliable across subjects?”

 location
“does the location make sense in the light of prior knowledge?”
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fMRI analysis

 if you can only test for location, experimental
hypotheses will be formulated in terms of location

 ever finer contrasts...
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fMRI analysis

 if you can only test for location, experimental
hypotheses will be formulated in terms of location

 ever finer contrasts...

“Brain Activation During Viewing of Erotic Film Excerpts

under Influence of Alcohol”

“In order to examine this issue, functional MRI was performed in a
group of young, healthy, right handed males. Subjects viewed erotic
film excerpts alternating with emotionally neutral excerpts in a
standard block-design paradigm.”
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fMRI analysis

What could be missing?
 voxel interactions
 very small/unreliable differences between conditions
 making sense of many task conditions
 ...
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fMRI analysis with classifiers

subjects see gratings in
one of 8 orientations 

orientations
voxel responses

voxels in visual cortex
respond similarly to

different orientations

[Kamitani&Tong, 2005]
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fMRI analysis with classifiers

subjects see gratings in
one of 8 orientations 

orientations
voxel responses

voxels in visual cortex
respond similarly to

different orientations

[Kamitani&Tong, 2005]

yet, voxels can be combined
to predict the orientation
of the grating being seen!
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what questions can we ask?

meaningful
word

nonsense
word

univariate:
Is the activity of voxel v sensitive
to an experimental condition?

vs

multivariate:
Can voxel set S={v1, ... vn}

be used to predict the
experimental condition?

meaningful
word

nonsense
word
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what questions should we ask?

 Can we predict?

 Can we say what in the image is related to
what we are trying to predict, and how?

 Can we use prior knowledge to make better classifiers?

 Can we test hypotheses?

Exploratory

Confirmatory
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can we predict?

[Mitchell et al 2004, Haynes 2006, Norman 2006]

 is the subject seeing a sentence or a picture?
 which of several categories of words or pictures is a

subject seeing?
 is the subject reading an ambiguous sentence?
 will the subject answer correctly?
 what is the orientation of a stimulus visual grating?
 is there a face/music/tools/… in a film clip being seen?
 what is the subject perceiving?
 is the subject concealing information?
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yes, one can read minds*...
*Conditions may apply
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... but it comes at a price

Why?
 Few examples (10s-100s)
 Many features (10K-100K)
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... but it comes at a price

Why?
 Few examples (10s-100s)
 Many features (10K-100K)
 Noise:

 the scanner
 the body/brain
 the subject
 the subject
 the subject

 from our viewpoint: spatially correlated, heavy-tailed
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so what?

Common to almost all papers:

 Features are voxels

 Linear discriminant classifiers

voxels (features)

If
otherwise

tools
buildings...voxel 2voxel 1

weight1
x

voxel n

weight2
x

weight n
x+ + + +weight 0 + > 0
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so what?

Common to almost all papers:

 Examples are not individual images
 response to short neural activity is long
 responses add up
 easier to average over time Si
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so what?

Common to almost all papers:

 Examples are not individual images
 response to short neural activity is long
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 easier to average over time

 Need for voxel selection
 activation profile
 accuracy/mutual information with target variable
 location
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so what?

Common to almost all papers:

 Examples are not individual images
 response to short neural activity is long
 responses add up
 easier to average over time

 Need for voxel selection
 activation profile
 accuracy/mutual information with target variable
 location

 If a classifier can predict, the selection criterion identifies
voxels related to the target ...

 ... but what does the classifier itself tell us?
Si
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experiments

 Studies designed to:
 elicit mental representations of semantic categories
 try to understand how those map to brain activation
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experiments

 Studies designed to:
 elicit mental representations of semantic categories
 try to understand how those map to brain activation

 The features are voxels
 Linear discriminant classifiers
 Cross-validation
 Best subject results (consistent across subjects)
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2 categories experiment

 Subjects read concrete nouns in 2 categories
 words are either tools or buildings
 task:

see a word/think about it for 3 sec., 8 sec. pause afterwards

 e.g. “hammer”, “saw”, “palace”, “hut”
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2 categories experiment

 Subjects read concrete nouns in 2 categories
 words are either tools or buildings
 task:

see a word/think about it for 3 sec., 8 sec. pause afterwards

 e.g. “hammer”, “saw”, “palace”, “hut”

 Classification task: predict the category
 Example:

average 3D image of middle 4 secs of a trial

 42 examples of each noun category
 10K-20K features
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2 categories linear discriminants

It’s possible to predict category using all the voxels

GNB weights
(accuracy 65%)
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2 categories linear discriminants

It’s possible to predict category using all the voxels

GNB weights
(accuracy 65%)

L2 Logistic
Regression
weights
(accuracy 74%)

correlation 0.8
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2 categories voxel accuracy maps

What is each voxel contributing?

accuracy of
voxelwise
prediction
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[Kriegeskorte 2006]:
 Examine information inside a small region
 Train a classifier for

each voxel together
with its neighbours

voxel searchlight
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2 categories voxel accuracy maps

accuracy of
voxel
prediction

accuracy of
voxel
searchlight
prediction
(similar in other
subjects)
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experiments – voxel selection

 Scoring methods for voxel selection
 activation (different from zero in at least one class)
 accuracy (training set cross-validation accuracy of a voxel)
 searchlight accuracy (same but accuracy of voxel+neighbours)
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experiments – voxel selection

 Scoring methods for voxel selection
 activation (different from zero in at least one class)
 accuracy (training set cross-validation accuracy of a voxel)
 searchlight accuracy (same but accuracy of voxel+neighbours)

 Filter voxel selection in each fold
 rank voxels by their score according to a method
 pick top 10, top 20, top 40, etc
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10 exemplar experiment

 subjects read concrete nouns in 2 categories
 words are either tools or buildings
 task:

see a word/think about it for 3 sec., 8 sec. pause afterwards

 subjects do the same task with drawings

 Classification task: predict the exemplar
 Example:

average 3D image middle 4 secs of a trial

 6 examples of each exemplar
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10 exemplar experiment

Peak accuracy selecting 400 voxels with 3 methods:

GNB Log.Reg.

all cortex voxels 23% 22%
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10 exemplar experiment

Peak accuracy selecting 400 voxels with 3 methods:

GNB Log.Reg.
activation 70% 58%
accuracy 72% 70%
searchlight accuracy 90% 92%

all cortex voxels 23% 22%
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10 exemplar experiment

Peak accuracy selecting 400 voxels with 3 methods:

GNB Log.Reg. Fold Overlap
activation 70% 58% 0.09
accuracy 72% 70% 0.01
searchlight accuracy 90% 92% 0.26

all cortex voxels 23% 22%

#voxels selected on all folds
#voxels selected on any fold

= overlap
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10 exemplar experiment

Peak accuracy selecting 400 voxels with 3 methods:

GNB Log.Reg. Fold Overlap
activation 70% 58% 0.09
accuracy 72% 70% 0.01
searchlight accuracy 90% 92% 0.26

all cortex voxels 23% 22%

What makes searchlight accuracy better here?
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10 exemplar experiment

searchlight
selected voxels
picture stimuli

subject 1

subject 2
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10 exemplar experiment

searchlight
selected voxels
picture stimuli

subject 1

subject 2

voxel
correlation

voxel
correlation
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classifier experiment conclusions

 What should we consider?
 interpretation depends on location/selection criteria
 classifier regularization also plays a role
 information is redundant
 information is local
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classifier experiment conclusions

 What should we consider?
 interpretation depends on location/selection criteria
 classifier regularization also plays a role
 information is redundant
 information is local

 What should we care about?
 prediction accuracy
 describing what was learnt intelligibly

 location
 voxel behaviour reduced to a few classes
 voxel groupings/data abstraction

 reproducibility [Strother 2002]
 consistency with prior knowledge (mostly location)
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What is to be done?

 Get more data into play

 Model time or other parts of fMRI process

 Predictions other than stimuli

 Learn data abstractions

 Use prior knowledge
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What is to be done?

 Get more data into play

 use multiple subjects from the same study

 structural normalization (brain morph)

 functional normalization (activity morph)

 models have subject specific/subject independent parts

 use the same subject in multiple studies

 transfer/multitask learning
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What is to be done?

 Model time or other parts of fMRI process

 use voxels at a given time in a trial

 model trial response and learn classifiers for that

time (seconds)

voxel
activation

difference

ambiguous sentence
unambiguous sentence
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What is to be done?

 Predictions other than stimuli

 subjective mental states

 decisions

 subconscious processing

 group membership (diagnosis)

 behavioural measures
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What is to be done?

 Use prior knowledge/hypotheses

 brain areas/connections involved

 spatial locality
 neighbouring voxels have similar activity

 neighbouring voxels classifier weights have similar magnitude

 groups of voxels are acting together “interestingly”

 cognitive models

If
otherwise

tools
buildings...voxel 2voxel 1

weight1
x

voxel n

weight2
x

weight n
x+ + + +weight 0 + > 0

...
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What is to be done?

 Use prior knowledge/hypotheses

 brain areas/connections involved

 spatial locality
 neighbouring voxels have similar activity

 neighbouring voxels classifier weights have similar magnitude

 groups of voxels are acting together “interestingly”

 cognitive models

If
otherwise

tools
buildings...voxel 2voxel 1

weight1
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weight2
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x+ + + +weight 0 + > 0
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What is to be done?

 Learn and use data abstractions

 blobs/clusters

 interacting groups

 brain-wide components

 subject specific/shared across subjects

 non linear classifiers in terms of these?



53

 low-dimensional spatial decompositions

=

components or eigenimagesexample

a + b + c + d

(a,b,c,d)
is a low-dimensional

representation of
the example

in a basis of components
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 low-dimensional spatial decompositions

…

=

=

x

n examples X

m voxels

= xZ W l components

l-dimensional
representation of data

m voxels

n examples

l components
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combining decompositions with classifiers

…

=

=

x

new features to classify
from with linear discriminant

n examples X

m voxels

= xZ W l components

l-dimensional
representation of data

m voxels

!
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support vector decomposition machine (SVDM)

Learning a linear SVM based
on a low-dimensional

representation

Learning an informative
low-dimensional
representation

[Pereira&Gordon 2006]
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SVDM notation

n examples

m featuresk classification problems
(e.g. tools vs buildings
and word vs picture)

Y X
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SVDM notation

n examples

m featuresk classification problems

Y X

l componentsxZ WX̂ =

m features

Ŷ = Z x

k classification problems

!!Z xŶ =

Predictions

sign

l components
Learnt
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SVDM work in progress

 Multi-class
 Learn components shared by subsets of the classes

 Multi-subject

 Constraints
 classifier regularization
 component smoothness/sparsity
 voxel behaviour (e.g. active in few classes)
 hypothesis-driven component sharing

= Z W1X1 X2
W2
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What is to be done?

 Get more data into play

 Model time or other parts of fMRI process

 Predictions other than stimuli

 Learn data abstractions

 Use prior knowledge

 Doing well is much more than being accurate

 No science without hypotheses
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thank you!

Questions?

*No classifiers were harmed in producing this talk. Some grad students may have been.


