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Abstract

This paper introduces a novel classification method for functional magnetic res-
onance imaging datasets with tens of classes. The method is designed to make
predictions using information from as many brain locationsas possible, instead of
resorting to feature selection, and does this by decomposing the pattern of brain
activation into differently informative sub-regions. We provide results over a com-
plex semantic processing dataset that show that the method is competitive with
state-of-the-art feature selection and also suggest how the method may be used to
perform group or exploratory analyses of complex class structure.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a technique used in psychological experiments
to measure the blood oxygenation level throughout the brain, which is a proxy for neural activity;
this measurement is calledbrain activation. The data resulting from such an experiment is a 3D grid
of cells namedvoxels covering the brain (on the order of tens of thousands, usually), measured over
time as tasks are performed and thus yielding one time seriesper voxel (collected every 1-2 seconds
and yielding hundreds to thousands of points).

In a typical experiment, brain activation is measured during a task of interest, e.g. reading words,
and during a related control condition, e.g. reading nonsense words, with the goal of identifying
brain locations where the two differ. The most common analysis technique for doing this – statisti-
cal parametric mapping [4] – tests each voxel individually by regressing its time series on a predicted
time series determined by the task contrast of interest. This fit is scored and thresholded at a given
statistical significance level to yield a brain image with clusters of voxels that respond very differ-
ently to the two tasks (colloquially, these are the images that show parts of the brain that “light up”).
Note, however, that for both tasks there are many other processes taking place in tandem with this
task-contrasting activation: visual processing to read the words, attentional processing due to task
demands, etc. The output of this process for a given experiment is a set of 3D coordinates of all the
voxel clusters that appear reliably across all the subjectsin a study. This result is easy to interpret,
since there is a lot of information about what processes eachbrain area may be involved in. The
coordinates are comparable across studies, and thus resultreproduciblity is also an expectation.

In recent years, there has been increasing awareness of the fact that there is information in the entire
pattern of brain activation and not just in saliently activelocations. Classifiers have been the tool
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of choice for capturing this information and used to make predictions ranging from what stimulus a
subject is seeing, what kind of object they are thinking about or what decision they will make [12]
[14] [8]. The most common situation is to have an example correspond to the average brain image
during one or a few performances of the task of interest, and voxels as the features, and we will
discuss various issues with this scenario in mind.

The goal of this work is generally not (just) classification accuracy per se, even in diagnostic appli-
cations, but understanding where the information used to classify is present. If only two conditions
are being contrasted this is relatively straightforward asinformation is, at its simplest, a difference in
activation of a voxel in the two conditions. It’s thus possible to look at the magnitudes of the weights
a classifier puts on voxels across the brain and thus locate the voxels with the largest weights1; given
that there are typically two to three orders of magnitude more voxels than examples, though, classi-
fiers are usually trained on a selection of voxels rather thanthe entire activation pattern. Often, this
means the best accuracy is obtained using few voxels, from all across the brain, and that different
voxels will be chosen in different cross-validation folds;this presents a problem for interpretability
of the locations in question.

One approach to this problem is to try and regularize classifiers so that they include as many infor-
mative voxels as possible [2], thus identifying localizable clusters of voxels that may overlap across
folds. A different approach is to cross-validate classifiers over small sections of the grid covering the
brain, known assearchlights [10]. This can be used to produce a map of the cross-validatedaccu-
racy in the searchlight around each voxel, taking advantageof the pattern of activation across all the
voxels contained in it. Such a map can then be thresholded to leave only locations where accuracy
is significantly above chance. While these approaches have been used successfully many times over
the last decade, they will become progressively less usefulin face of the increasing commonality
of datasets with tens to hundreds of stimuli, and a correspondingly high number of experimental
conditions. Knowing the location of a voxel does not suffice to interpret what it is doing, as it could
be very different from stimulus to stimulus (rather than just active or not, as in the two condition
situation). It’s also likely that no small brain regions will allow for a searchlight classifier capable of
distinguishing between all possible conditions at the spatial resolution of fMRI, and hence defining
a searchlight size or shape is a trade-off between includingvoxels and making it harder to locate
information or train a classifier – as the number of features increases as the number of examples
remains constant – and excluding voxels and thus the number of distinctions that can be made.

This paper introduces a method to address all of these issueswhile still yielding an interpretable,
whole-brain classifier. The method starts by learning how todecompose the pattern of activation
across the brain into sub-patterns of activation, then it learns a whole-brain classifier in terms of the
presence and absence of certain subpatterns and finally combines the classifier and pattern informa-
tion to generate brain maps indicating which voxels belong to informative patterns and what kind of
information they contain. This method is partially based onthe notion of pattern feature introduced
in an earlier paper by us [15], but has been developed much further so as to dispense with most
parameters and allow the creation of spatial maps usable forgroup or exploratory analyses, as will
be discussed later.

2 Data and Methods

2.1 Data

The grid covering the brain contains on the order of tens of thousands voxels, measured over time
as tasks are performed, every 1-2 seconds, yielding hundreds to thousands of 3D images per experi-
ment. During an experiment a given task is performed a certain number of times – trials – and often
the images collected during one trial are collapsed or averaged together, giving us one 3D image
that can be clearly labeled with what happened in that trial,e.g. what stimulus was being seen or
what decision a subject made. Although the grid covers the entire head, only a fraction of its voxels
contain cortex in a typical subject; hence we only consider these voxels as features.

1Interpretation is more complicated if nonlinear classifiers are being used [6], [17], but this is far less
common
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A searchlight is a small section of the 3D grid, in our case a27 = 3 × 3 × 3 voxel cube. Analyses
using searchlights generally entail computing a statistic[10] or cross-validating a classifier over the
dataset containing just those voxels [16], and do so for the searchlight around each voxel in the brain,
covering it in its entirety. The intuition for this is that individual voxels are very noisy features, and
an effect observed across a group of voxels is more trustworthy.

In the experiment performed to obtain our dataset2 [13], subjects observed a word and a line drawing
of an item, displayed on a screen for 3 seconds and followed by8 seconds of a blank screen. The
items named/depicted belonged to one of 12 categories: animals, body parts, buildings, building
parts, clothing, furniture, insects, kitchen, man-made objects, tools, vegetables and vehicles. The
experimental task was to think about the item and its properties while it was displayed. There were
5 different exemplars of each of the 12 categories and 6 experimental epochs. In each epoch all 60
exemplars were shown in random order without repetition, and all epochs had the same exemplars.
During an experiment the task repeated a total of 360 times, and a 3D image of the fMRI-measured
brain activation acquired every second.

Each example for classification purposes is the average image during a 4 second span while the
subject was thinking about the item shown a few seconds earlier (a period which contains the peak
of the signal during the trial; the dataset thus contains 360examples, as many as there were trials.
The voxel size was3 × 3 × 5 mm, with the number of voxels being between 20000 and 21000
depending on which of the 9 subjects was considered. The features in each example are voxels, and
the example labels are the category of the item being shown inthe trial each example came from.
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Figure 1: Construction of data-driven searchlights.

2.2 Method

The goal of the experiment our dataset comes from is to understand how a certain semantic category
is represented throughout the brain (e.g. do “Insects” and “Animals” share part of their representa-
tion because both kinds of things are alive?). Intuitively,there is information in a given location if
at least two categories can be distinguished looking at their respective patterns of activation there;
otherwise, the pattern of activation is noise or common to all categories. Our method is based upon
this intuition, and comprises three stages:

2The data were kindly shared with us by Tom Mitchell and Marcel Just, fromCarnegie Mellon University.
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1. the construction of data-driven searchlights, parcels of the 3D grid wherethe same dis-
criminations between pairs of categories can be made (these are generally larger than the
3× 3× 3 basic searchlight)

2. the synthesis ofpattern features from each data-driven searchlight, corresponding to the
presence or absence of a certain pattern of activation across it

3. the training and use of a classifier based on pattern features and the generation of an anatom-
ical map of the impact of each voxel on classification

and these are described in detail in each of the following sections.

2.2.1 Construction of data-driven searchlights

Create pairwise searchlight maps In order to identify informative locations we start by consid-
ering whether a given pair of categories can be distinguished in each of the thousands of3 × 3 × 3
searchlights covering the brain:

1. For each searchlight cross-validate a classifier using the voxels belonging to it, obtaining
an accuracy value which will be assigned to the voxel at the center of the searchlight,
as shown in part 1 of Figure 1. The classifier used in this case was Linear Discriminant
Analysis (LDA, [7]), with a shrinkage estimator for the covariance matrix [18], as this was
shown to be effective at both modeling the joint activation of voxels in a searchlight and
classification [16].

2. Transform the resulting brain image with the accuracy of each voxel into ap-value brain
image (of obtaining accuracy as high or higher under the nullhypothesis that the classes
are not distinguishable, see [11]), as shown in part 1 of Figure 1.

3. Threshold thep-value brain image using False Discovery Rate [5] (q = 0.01) to correct
multiple for multiple comparisons and get a binary brain image with candidate locations
where this pair of categories can be distinguished, as shownin part 2 of Figure 1.

The outcome for each pair of categories is a binary significance image, where a voxel is 1 if the
categories can be distinguished in the searchlight surrounding it or 0 if not; this is shown for all
pairs of categories in part 3 of Figure 1. This can also be viewed per-searchlight, yielding a binary
vector encoding which category pairs can be distinguished and which can be rearranged into a binary
matrix, as shown in part 4 of Figure 1.

Aggregate adjacent searchlights Examining each small searchlight makes sense if we consider
that, a priori, we don’t know where the information is or how big a pattern of activation would have
to be considered (with some exceptions, notably areas that respond to faces, houses or body parts, see
[9] for a review). That said, if the same categories are distinguishable in two adjacent searchlights
– which overlap – then it is reasonable to assume that all their voxels put together would still be
able to make the same distinctions. Doing this repeatedly allows us to finddata-driven searchlights,
not bound by shape or size assumptions. At the same time we would like to constrain data-driven
searchlights to the boundaries of known, large, anatomically determined regions of interest (ROI),
both for computational efficiency and for interpretability, as will be described later.

At the start of the aggregation process, each searchlight isby itself and has an associated binary
information vector with 66 entries corresponding to which pairs of classes can be distinguished in
its surrounding searchlight (part 3 of Figure 1). For each searchlight we compute the similarity
of its information vector with those of all its neighbours, which yields a 3D grid similarity graph.
We then take the portion of the graph corresponding to each ROI in the AAL brain atlas [19], and
use modularity [1] to divide it into a number of clusters of adjacent searchlights supporting similar
distinctions, as shown in panel 5 of Figure 1. After this is done for all ROIs we obtain a partition of
the brain into a few hundred clusters, the data-driven searchlights. Figure 2 depicts the granularity
of a typical clustering across multiple brain slices of one of the participants.

The similarity measure between two vectorsvi andvj is obtained by computing the number of
1-entries present in both vectors,

∑
pairs AND(vi,vj), the number of 1-entries present in only one

of them,
∑

pairs XOR(vi,vj) and then the measure
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Figure 2: Data-driven searchlights for participant P1 (brain slices range from inferior to superior).

similarity(vi,vj) =

∑
pairs AND(vi,vj)−

∑
pairs

XOR(vi,vj)

2∑
pairs AND(vi,vj)

The measure was chosen because it peaks at 1, if the two vectors match exactly, and decreases –
possibly into negative values – if there are mismatches; it will tolerate more mismatches if there are
more distinctions being made. It will also deem sparse vectors similar as long as there are vew few
mismatches. The number of entries present in only one is divided by 2 so that the differences do not
get twice the weight of the similarities.

The centroid for each cluster encodes the pairs of categories that can be distinguished in that data-
driven searchlight. The centroid is obtained by combining the binary information vectors for each
of the searchlights in it using a soft-AND function, and is itself a binary information vector. A given
entry is 1 – the respective pair of categories is distinguishable – if it is 1 in at leastq% of the cluster
members (whereq is the false discovery rate used earlier to threshold the binary image for that pair
of categories).

2.2.2 Generation of pattern features from each data-drivensearchlight
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Figure 3: Construction of pattern detectors and pattern features from data-driven searchlights.

Construct two-way classifiers from each data-driven searchlight Each data-driven searchlight
has a set of pairs of categories that can be distinguished in it. This indicates that there are particular
patterns of activation across the voxels in it which are characteristic of one or more categories, and
absent in others. We can leverage this to convert the patternof activation across the brain into a
series of sub-patterns, one from each data-driven searchlight.

For each data-driven searchlight, and for each pairwise category distinction in its information vector,
we train a classifier using examples of the two categories andjust the voxels in the searchlight (a
linear SVM withλ = 1, [3]); these will bepattern detectors, outputting a probability estimate for
the prediction (which we transform to the[−1, 1] range), shown in part 1 of Figure 3.
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Use two-way classifiers to generate pattern featuresThe set of pattern-detectors learned from
each data-driven searchlight can be applied toany example, not just the ones from the categories
that were used to learn them. The output of each pattern-detector is then viewed as representing the
degree to which the detector thinks that either of the patterns it is sensitive to is present. For each
data-driven searchlight, we apply all of its detectors toall the examples in the training set, over the
voxels belonging to the searchlight, as illustrated in part2 of Figure 3. The output of each detector
across all examples becomes a new, syntheticpattern feature. The number of these pattern features
varies per searchlight, as does the number of searchlights per subject, but at the end we will typically
have between 10K and 20K of them.

Note that there may be multiple classifiers for a given cluster which produce very similar outputs
(e.g. ones that captured a pattern present in all animate object categories versus one present in all
inanimate object ones); these will be highly correlated andredundant. We address this by using
Singular Value Decomposition (SVD, [7]) to reduce the dimensionality of the matrix of pattern
features to the same as the number of examples (180), keepingall singular vectors; this is shown in
part 3 of Figure 3. The detectors and the SVD transformation matrix learned from the training set
are also applied to the test set.

2.2.3 Classification and impact maps for each class

singular vector classifier

    for "tools"-vs-rest

pattern feature classifier

    for "tools"-vs-rest
pattern feature impact values

"tools" singular vectors "tools" pattern features

invert SVD

invert SVD

X
per-cluster impact values

voxelwise impact values

aggregate impact of pattern

features belonging to each cluster

assign per-cluster impact value

to the voxels that belong to it

1 2

3

Figure 4: The process of going from the weights of a one-versus-rest category classifier over a
low-dimensional pattern feature representation to the impact of each voxel in that classification.

Given the low-dimensional pattern feature dataset, we train a one-versus-rest classifier (a linear
SVM with λ = 1, [3]) for each category; these are then applied to each example in the test set, with
the label prediction corresponding to the class with the highest class probability.

The classifiers can also be used to determine the extent to which each data-driven searchlight was
responsible for correctly predicting each class. A one-versus-rest category classifier consists of a
vector of 180 weights, which can be converted into an equivalent classifier over pattern features by
inverting the SVD, as shown in part 1 of Figure 4. Theimpact of each pattern feature in correctly
predicting this category can be calculated by multiplying each weight by the values taken by the
corresponding pattern feature over examples in the category, and averaging across all examples; this
is shown in part 2 of Figure 4. These pattern-feature impact values can then be aggregated by the
data-driven searchlight they came from, yielding a net impact value for that searchlight. This is the
value that is propagated to each voxel in the data-driven searchlight (part 3 of Figure 4) in order to
generate an impact map.

3 Experiments and Discussion

3.1 Classification

Our goal in this experiment is to determine whether transforming the data from voxel features to
pattern features preserves information, and how competitive the results are with a classifier com-
bined with voxel selection. In all experiments we use a split-half cross-validation loop, where the
halves contain examples from even and odd epochs, respectively, 180 examples in each (15 per cat-
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egory). If cross-validation inside a split-half training set is required, we use leave-one-epoch out
cross-validation,

Baseline We contrasted experimental results obtained with our method with a baseline of classi-
fication using voxel selection. The scoring criterion used to rank each voxel was the accuracy of a
LDA classifier – same as described above – using the3 × 3 × 3 searchlight around each voxel to
do 12-category classification. The number of voxels to use was selected by nested cross-validation
inside the training set3. The classifier used was a linear SVM (λ = 1, [3]), same as the whole brain
classifier in our method.

Results The results are shown in the first line of Table 1; across subjects, our method is better than
voxel selection, with thep-value of a sign-test of this being< 0.01. It is substantially better than a
classifier using all the voxels in the brain directly.

Whereas the accuracy is above chance (0.08) for all subjects, it is rather low for some. There
are at least two factors responsible for this. The first is that some classes give rise to very similar
patterns of activation (e.g. “buildings” and “building parts”), and hence examples in these classes are
confusable (confusion matrices bear this out). The second factor is that subjects vary in their ability
to stay focused on the task and avoid stray thoughts or remembering other parts of the experiment,
hence examples may not belong to the class corresponding to the label or even any class at all. [13]
also points out that accuracy is correlated with a subject’sability to stay still during the experiment.

Table 1: Classification accuracy for the 9 subjects using ourmethod, as well as two baselines.
P1 P2 P3 P4 P5 P6 P7 P8 P9

our method 0.54 0.34 0.33 0.42 0.15 0.19 0.22 0.21 0.16
baseline (voxel selection) 0.53 0.33 0.24 0.34 0.14 0.16 0.21 0.20 0.15
baseline (using all voxels) 0.31 0.21 0.19 0.27 0.13 0.09 0.14 0.13 0.15
#voxels selected (fold 1) 1200 400 200 1600 800 800 800 400 2000
#voxels selected (fold 2) 800 200 100 800 50 8000 100 1200 100

3.2 Impact maps

tool

building

Figure 5: Average example for categories “tool” and “building” in participant P1 (slices ordered
from inferior to superior, red is activation above the imagemean, blue below).

As described in Section 2.2.3, an impact map can be produced for each category, showing the extent
to which each data-driven searchlight helped classify thatcategory correctly. In order to better
understand better how impact works, consider two categories “tools” and “buildings” where we
know where some of the information resides (for “tools” around the central sulcus, visible on the
right of slices to the right, for “buildings” around the parahippocampal gyrus, visible on the lower
side of slices to the left). Figure 5 shows the average example for the two categories; note how
similar the two examples are across the slices, indicating that most activation is shared between the
two categories.

The impact maps for the same participant in Figure 6 show thatmuch of the common activation is
eliminated, and that the areas known to be informative are assigned high impact in their respective

3Possible choices were 50, 100, 200, 400, 800, 1200, 1600, 2000, 4000, 8000, 16000 or all voxels.
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tool

building

Figure 6: Impact map for categories “tool” and “building” inparticipant P1.

tool

building

Figure 7: Average impact map for categories “tool” and “building” across the nine participants.

maps. Impact is positive, regardless of whether activationin each voxel involved is above or below
the mean of the image; the activation of each voxel influencesthe classifier only in the context of
its neighbours in each data-driven searchlight. Note, also, that unlike a simple one-vs-rest classifier
or searchlight map, the notion of impact can accommodate thesituation where the same location is
useful, with either different or the same pattern of activation, for two separate classes (rather than
have it be downweighted relative to others that might be unique to that particular class).

Finally, consider that impact maps can be averaged across subjects, as shown in Figure 7, or un-
dergot-tests or a more complex second-level group analysis. A moreexploratory analysis can be
performed by considering locations that are high impact forevery participant and, through their
data-driven searchlight, examine the corresponding cluster centroids and get a complete picture of
which subsets of the classes can be distinguished there (similar to the bottom-up process in part 5 of
Figure 1, but now done top-down and given a cross-validated classification result and impact value).
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