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Abstract

Brain functional connectivity (FC) changes have been measured across seconds using fMRI. This 

is true for both rest and task scenarios. Moreover, it is well accepted that task engagement alters 

FC, and that dynamic estimates of FC during and before task events can help predict their nature 

and performance. Yet, when it comes to dynamic FC (dFC) during rest, there is no consensus 

about its origin or significance. Some argue that rest dFC reflects fluctuations in on-going 

cognition, or is a manifestation of intrinsic brain maintenance mechanisms, which could have 

predictive clinical value. Conversely, others have concluded that rest dFC is mostly the result of 

sampling variability, head motion or fluctuating sleep states. Here, we present novel analyses 

suggesting that rest dFC is influenced by short periods of spontaneous cognitive-task-like 

processes, and that the cognitive nature of such mental processes can be inferred blindly from the 

data. As such, several different behaviorally relevant whole-brain FC configurations may occur 

during a single rest scan even when subjects were continuously awake and displayed minimal 

motion. In addition, using low dimensional embeddings as visualization aids, we show how FC 

states—commonly used to summarize and interpret resting dFC—can accurately and robustly 

reveal periods of externally imposed tasks; however, they may be less effective in capturing 

periods of distinct cognition during rest.
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INTRODUCTION

As the field of functional Magnetic Resonance Imaging (fMRI) moves away from group-

level reports and becomes increasingly interested in the types of single-subject evaluations 

that are necessary for clinical diagnosis and prognosis; there is an increasing focus on 

examining how brain states change over time rather than treating each scan as a static 

snapshot of a person’s brain function (Hutchison et al., 2013a; Preti et al., 2017; Saggar et 

al., 2018). For example, individual scans today are often described in terms of a limited set 

of recurring, short-duration (tens of seconds), whole-brain FC configurations named FC 

states (Allen et al., 2014; Damaraju et al., 2014; Gonzalez-Castillo et al., 2015). Metrics 

describing their dwell times, ordering and frequency of transitions can then be used to 

quantify different aspects of empirically observed dFC (Calhoun et al., 2014). Many 

questions remain both about the etiology of empirically observed systems-level FC 

dynamics; as well as regarding the ability of current models to accurately capture behavioral, 

cognitive and clinically relevant dynamic phenomena.

One well accepted principle is that task performance can modulate dFC across the brain 

(Gonzalez-Castillo and Bandettini, 2018), even if the brain never abandons an overall small-

world configuration (Di et al., 2013). As humans perceive external stimuli and engage with 

cognitive tasks, patterns of communication across brain networks reshape (Cole et al., 2014), 

modularity decreases (Kitzbichler et al., 2011), communication hubs relocate (Leske et al., 

2015), and overall variability of FC estimates drops (Elton and Gao, 2015). FC modulations 

induced by tasks are sufficiently profound as to allow prediction of subsequent perceptual 

outcomes such as response time (Thompson et al., 2013) and pain levels (Ploner et al., 

2010). Furthermore, FC estimates computed from only seconds long portions of data can be 

used to classify scans according to tasks (Shirer et al., 2012) and to segment multi-task scans 

into task-homogenous periods (Gonzalez-Castillo et al., 2015).

Nonetheless, despite empirical reports of dFC in resting humans (Allen et al., 2014), 

macaques (Hutchison et al., 2013b) and rodents (Keilholz et al., 2013), a similar level of 

consensus does not exist regarding the significance of dFC phenomena while at rest—with 

rest referring to a subject’s state when instructed to stay awake and not required to perform 

any given task or pay attention to any specific external stimuli. Those who hypothesize rest 

dFC to be neuronally relevant have explored the phenomenon in the context of 

consciousness (Barttfeld et al., 2015), development (Qin et al., 2015) and clinical disorders 

(Damaraju et al., 2014; Falahpour et al., 2016; Wee et al., 2016). These studies have shown 

how the complexity of dFC decreases as consciousness levels decline (Barttfeld et al., 2015), 

how dynamic inter-regional interactions can be used to predict brain maturity (Qin et al., 

2015), and how dFC derivatives (e.g., dwell times) can be diagnostically informative for 

conditions such as schizophrenia (Damaraju et al., 2014), mild cognitive impairment (Wee et 

al., 2016), and autism (Falahpour et al., 2016). Yet, many others have raised valid concerns 

regarding the ability of current dFC estimation methods to capture neuronally relevant dFC 

at rest (Handwerker et al., 2012; Hindriks et al., 2016; Leonardi and Van De Ville, 2015; 

Shakil et al., 2016). These concerns include a lack of appropriate null models to discern real 

dynamics from sampling variability (Hindriks et al., 2016), improper pre-processing leading 

to spurious dynamics (Leonardi and Van De Ville, 2015), and excessive temporal smoothing 
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that hinder our ability to capture sharp and rapid transitions of interest (a real concern for 

sliding window techniques used to estimate FC states; (Keilholz et al., 2017; Shakil et al., 

2016)). Finally, some have stated that resting dFC is primarily a manifestation of sampling 

variability, residual head motion artifacts, and fluctuations in sleep state; and that as such, it 

lacks clear cognitive or psychological significance (Laumann et al., 2017).

One cause of such discrepant views is that it is challenging to demonstrate the potential 

cognitive correlates of resting dFC; especially given the unconstrained cognitive nature of 

rest and scarcity of methods to reliably infer the cognitive correlates of whole-brain FC 

patterns. When subjects are instructed to quietly rest, retrospective reports demonstrate that 

subjects often engage in a succession of self-paced cognitive processes including inner 

speech, musical experience, visual imagery, episodic memory recall, future planning, mental 

manipulation of numbers, and periods of heightened somatosensory sensations 

(Delamillieure et al., 2010). Reconfigurations of FC patterns during rest could, to some 

extent, be a manifestation of this flow of covert self-paced conscious cognition (Barttfeld et 

al., 2015); even if other factors such as random exploration of cognitive architectures (Deco 

et al., 2013), fluctuations in autonomic system activity (Chang et al., 2013), intrinsic 

unconscious processes (Kucyi, 2018), self-initiated body motion (Tan et al., 2017) and 

arousal levels (Laumann et al., 2017), also contribute. Here we present a series of 

experiments aimed at exploring this hypothesis, namely that distinct periods of covert 

cognition are significant contributors to observable resting dFC. We use the term “covert 

cognition” in the previous sentence as an umbrella term to refer to all different mental states 

a subject undertakes while lying still inside the MRI scanner. These will differ in nature, 

order, timing and length across subjects; and may include both ongoing subjective 

experiences as well as spontaneous memory replays or fluctuations in attention, among 

many others. In other words, we use the term “cognition during rest” as an equivalent 

concept to William James “flights” and “perchings” of the mind; and as such, it 

encompasses the different types of spontaneous thoughts—namely daydreaming, mind-

wandering, and creative thinking—described by Christoff et al. (2016) when describing a 

neuroscientific framework for the study of mind-wandering. In parallel, we also evaluate the 

ability of FC states—one of the most prominent approaches to summarize rest dFC—to 

capture those hypothesized periods of distinct cognition during rest.

To explain these diverse and sometimes contradictory observations regarding dFC, we 

extend current FC state methodology in two ways. First, we combine hemodynamic 

deconvolution (Caballero Gaudes et al., 2013) and activity-based reverse-inference (Yarkoni 

et al., 2011) to map FC states onto cognitive states. An FC state is commonly defined in 

terms of a representative FC matrix and a timeline (when it occurs). The deconvolution step 

allows us to also generate a representative “activity” map per FC state. Those FC state 

“activity” maps are subsequently input to a pre-existing decoding framework (Neurosynth; 

(Yarkoni et al., 2011)) able to map whole-brain activity patterns into ranked lists of cognitive 

processes likely associated with the input map. A direct mapping from representative FC 

matrices to cognitive processes might be preferable but, unfortunately as of today, such 

systems do not exist. In the past, hemodynamic deconvolution and reverse-inference have 

proven successful at decoding the nature of self-driven body motion during rest scans (Tan et 

al., 2017). Here, we extend that approach for the purpose of attaining open-ended cognitive 
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decoding of FC states. The second way in which we extend current FC state methodology is 

the use of manifold learning techniques to generate low dimensional representations of time-

varying FC that help visualize how connectivity evolves and identify periods of distinct 

cognition during rest. Projection of dynamic FC patterns into low dimensional spaces to ease 

interpretation has also been proposed by Dodero et al. (2016), as well as by Shine et al. 

(2019) to explore system-wide brain dynamics as a function of cognition.

The proposed methods are first evaluated on a multi-task1 fMRI dataset (Gonzalez-Castillo 

et al., 2015) for which precise information about the timing and nature of cognitive states (as 

dictated by task demands) is available. Next, we apply the same methods to 15 mins long 

resting state scans with low head motion and infrequent eye closures from the human 

connectome project (HCP, (Van Essen et al., 2013)). This way, we examine the possible 

presence of periods of distinct cognition during rest, and the ability of FC states to uncover 

such periods. Comparative analyses across both scenarios (multi-task and rest) are important 

as substantial differences in the timing and nature of externally driven versus self-paced 

cognitive processes, and their manifestations in terms of dFC phenomena, may modulate the 

ability of models to capture cognitively relevant information across both scenarios.

Our results confirm both that FC states can accurately capture periods of distinct cognition 

driven by external task demands, as previously shown (Gonzalez-Castillo et al., 2015), and 

also that the proposed extension for the FC state framework permits accurate inference of 

the cognitive processes underlying each task FC state. Next, we show that although periods 

of distinct task-like cognition are present during pure rest, and their cognitive correlates can 

be inferred in a similar manner, FC state modeling—at least in the specific form examined 

here—does not identify discrete cognitive states as consistently as with the task data. 

Overall, our work suggests that resting dFC is influenced by periods of task-like cognition, 

and therefore more than a single correlation structure may be necessary to entirely describe 

rest scans. At the same time, our results suggest that FC states do not consistently capture 

periods of distinct cognition during rest, and that their estimation and interpretation as a 

model for rest dFC should be updated accordingly.

METHODS

Multi-Task Dataset

The multi-task dataset used here has been previously described in detail in (Gonzalez-

Castillo et al., 2015). In summary, it contains data from 22 subjects (13 females; age 27 +/

− 5 y.o.) who gave informed consent in compliance with a protocol approved by the 

Institutional Review Board of the National Institute of Mental Health in Bethesda, MD. The 

data from two subjects were discarded from the analysis due to excessive spatial distortions 

in the functional time series.

The MRI data have been deposited in Xnat Central, https://central.xnat.org (project ID: 

FCStateClassif).

1This multi-task dataset consists of 25 mins long scans acquired as subjects engage and transition between four different tasks—
namely rest, math, 2-back (MEMO) and visual attention (VIDEO)—distributed in 3 mins long periods (two such periods per task).
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Multi-Task Experimental Paradigm

Subjects were scanned continuously for 25 min and 24 s while performing four different 

tasks: rest with eyes open (REST), simple mathematical computations (MATH), 2-back 

working memory (MEMO), and visual attention/recognition (VIDEO). Each task occupied 

two separate 180-s blocks, preceded by a 12-s instruction period. Task blocks were arranged 

so that each task was always preceded and followed by a different task. Additional details 

can be found on the supplementary materials accompanying Gonzalez-Castillo et al. (2015).

Multi-Task Data Acquisition

Imaging was performed on a Siemens 7 Tesla MRI scanner equipped with a 32-element 

receive coil (Nova Medical). Functional runs were obtained using a gradient recalled, single 

shot, echo planar imaging (gre-EPI) sequence: (TR=1.5 s; TE=25 ms; FA=50°; 36 

interleaved slices; slice thickness = 2 mm; in-plane resolution = 2×2 mm; GRAPPA=2). 

Each multi-task scan consists of 1,017 volumes acquired continuously as subjects engage 

and transition between the different tasks. In addition, high resolution (1mm3) T1-weighted 

magnetization-prepared rapid gradientecho and proton density (PD) sequences were 

acquired for presentation and alignment purposes.

Multi-Task Data Preprocessing

Data preprocessing was conducted with AFNI (Cox, 1996). Preprocessing steps match those 

described in Gonzalez-Castillo et al. (2015), and include: (i) despiking; (ii) physiological 

noise correction (in all but four subjects, due to the insufficient quality of physiological 

recordings for these subjects); (iii) slice time correction; and (iv) head motion correction. In 

addition, mean, slow signal trends modeled with Legendre polynomials up to seventh order, 

signal from eroded local white matter, signal from the lateral ventricles (cerebrospinal fluid), 

motion estimates, and the first derivatives of motion were regressed out in a single 

regression step to account for potential hardware instabilities and remaining physiological 

noise [ANATICOR model] (Jo et al., 2010). Finally, time series were converted to signal 

percent change, bandpass filtered [0.03 – 0.18Hz], and spatially smoothed (FWHM = 4mm). 

The cutoff frequency of the high pass filter was chosen to match the inverse of window 

length (WL = 30s); following recommendations from Leonardi and Van De Ville (2015).

In addition, spatial transformation matrices to go from EPI native space to Montreal 

Neurological Institute (MNI) space were computed for all subjects following procedures 

previously described in (Gonzalez-Castillo et al., 2013). These matrices were then used to 

bring publicly available regions of interest (ROI) definitions from MNI space into each 

subject’s EPI native space.

Resting-State Dataset

In addition to the previously described multi-task scan dataset, we also conducted analyses 

on a set of 20 resting-state scans part of Human Connectome Project (Van Essen et al., 

2013). In particular, we used the first resting-state scan [TR=1s; TE=22.2ms; FA=45°; Voxel 

Resolution = 1.6×1.6×1.6mm3; Multiband Factor = 5; GRAPPA = 2] from 20 subjects part 

of the 1200 Release (March 2018) for which FIX (Salimi-Khorshidi et al., 2014) pre-

processed resting-state scans acquired on a 7T MR system were available. Subject selection 
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proceeded as follows. First, out of the 175 subjects available, we selected the 144 subjects 

that completed both the NIH and non-NIH toolbox behavioral batteries, as well as alcohol 

and smoking questionnaire, and the family history of psychiatric and neurological disorders. 

Of these remaining 144 subjects, we further restricted our sample to the subset of 106 

subjects for which eye tracking data was available for the first resting scan. Next, based on 

windowed estimates of percent time of eye closure per window, we selected the 37 subject 

subjects that never had their eyes closed for more than 40% of the duration of any sliding 

window utilized in our analyses (Suppl. Fig. 6). Finally, we restricted our study to the 20 

subjects with the least amount of maximum absolute motion among those 37 subjects 

(Suppl. Fig. 7).

In addition to the pre-processing performed via the HCP FIX-ICA denoising pipeline, we 

also applied band-pass filtering (0.03 – 0.18Hz]), and spatial smoothing (FWHM = 4mm) to 

match equivalent filtering and spatial smoothing steps performed on the multi-task dataset. 

Following these steps, scan segmentation analyses proceeded as described below for both 

datasets (e.g., multi-task and rest).

Scan Segmentation into Cognitively Homogenous Segments

Segmentation of multi-task scans into cognitively homogenous segments was performed on 

the basis of short-term 30 s long functional connectivity patterns (snapshots) following 

procedures previously described in Gonzalez-Castillo et al. ((2015); Supp. Fig. 1.B). First, 

representative time-series ROIs from the Craddock (2012) 200-ROI atlas were obtained and 

input to a PCA (keep 97.5% of the variance) to reduce the dimensionality of the data. This 

resulted, on average, in connectivity matrices of size 72 × 72 instead of the original 200 × 

200. Remaining PCA time series were subsequently segmented in time using overlapping 

windows of duration 30s. Sliding step was set to 1.5 s (one TR). For each window, we 

computed all pairwise correlations between PCA time series, transform them into Z-scores 

using the Fisher transform, and put them in vector form. For each multi-task scan this 

procedure resulted in 988 vectors (one per-window). We often refer to these vectors of 

windowed connectivity as connectivity snapshots or simply snapshots throughout the 

manuscript.

Lastly, these connectivity vectors were inputted into the k-means (k=4 given the number of 

tasks; distance metric=correlation) clustering algorithm in MATLAB 2017b, which groups 

connectivity vectors into four groups by maximizing within-group similarity and between-

group dissimilarity, using correlation as a distance metric between snapshots. The algorithm 

ran 10,000 times with different random initializations so that the clustering results do not 

depend on the initialization of the algorithm. Then, the algorithm selects as optimal partition 

the one with the lowest within-cluster sums of point-to-centroid distances.

We hypothesize that each group will contain primarily vectors from the same task based on 

the original results from Gonzalez-Castillo et al. (2015). If so, the time spanned by all 

windows in a given group define a segment from the original scan during which the subject 

was engaged with primarily one type of cognitive activity (e.g., one task). As an 

unsupervised clustering algorithm, k-means only informs us about groupings in the data, not 

about the meaning (e.g., the task or main cognitive process) associated with each group.
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Computation of Activity Map per Segment

For the computation of representative “activity” maps we relied on hemodynamic 

deconvolution because it does not require any information about the timing or nature of what 

subjects are doing in order to estimate activity. This is key to ensure the applicability of the 

procedure to rest data.

Pre-processed voxel-wise time series—excluding the low pass filtering step—were input to 

AFNI program 3dPFM, which implements the fMRI deconvolution algorithm named Sparse 

Free Paradigm Mapping (SPFM; (Caballero Gaudes et al., 2013)). This program takes as 

input voxel-wise fMRI time series and a canonical hemodynamic response model—here we 

used the SPFM canonical response (SPGM1 function on AFNI program 3dDeconvolve). The 

output consists on voxel-wise time series of sparse activity-inducing events (Suppl. Fig. 1.C) 

that best explain the input fMRI time series. The deconvolution algorithm enforces sparsity 

in time via an L1 norm regularized estimator using the LASSO. Here, the Akaike’s 

Information Criterion (AIC) was used to select the regularization parameters per voxel.

First, voxel-wise time-series of activity inducing events were computed with AFNI program 

3dPFM using entire scan time series. Subsequently, activity-like maps were computed for 

each cognitively homogenous scan segment as dictated by the k-means analysis described 

above. In these maps, the intensity of a given voxel corresponds to the average intensity of 

all activity-inducing events detected by SPFM that fall within the temporal constrains of the 

given segment (see Suppl. Fig. 1.D). A such, this procedure resulted on one “activity” map 

per cognitively homogenous segment. These maps constitute the input to the decoding step 

described next.

It is worth noting that activity and connectivity views associated with a given scan segment 

(e.g., an FC-state), although complementary in nature, should not be expected to be fully 

independent. They both constitute summary views of the same data. In addition, connectivity 

estimates based on Pearson’s correlation can be expected to be dominated by large 

synchronized hemodynamic signal fluctuations, which are the target of the deconvolution 

technique used in the generation of the activity summary views(Petridou et al., 2013).”

Cognitive Decoding

To minimize limitations in terms of the number of cognitive processes that could be 

decoded, we decided to rely on existing meta-analytical databases of brain activity for this 

last step of the analysis. More particularly, we decided to use the reverse inference 

capabilities of the Neurosynth system; which permits decoding at two different levels: that 

of individual terms (Yarkoni et al., 2011) or that of topics (Poldrack et al., 2012). Because 

topics are collections of terms that frequently co-occur in the neuroscientific literature, they 

provide a more meaningful level of decoding; and were chosen as the decoding target here. 

Two different topic sets were used: the 50- and 400-cognitive state topic sets described in 

(Poldrack et al., 2012). In this manner, we were able to evaluate the efficiency of the method 

under two different difficulty levels.

Topic-level decoding with Neurosynth proceeds as follows. First, for each topic set, 

Neurosynth computes a reverse inference map (see Suppl. Figs. 3 & 4 for some examples) 
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based on activity foci reported in large corpus of neuroscientific literature as described in 

(Poldrack, 2011; Poldrack et al., 2012). Next, when an instance for decoding (e.g., the maps 

generated in “Computation of Activity Map per Segment”) is available, Neurosynth 
computes the spatial correlation between this input and all available topic maps. This 

correlation informs about the likelihood of a given topic being associated with the input 

map. The output of Neurosynth usually consists on a sorted list of topics and their associated 

correlations with the input. The higher the “correct” topic for a given input appears in this 

rank, the more accurate the decoding was. Below we describe how we evaluated the quality 

of the decoding.

Evaluation of Scan Segmentation and Decoding

Scan Segmentation Evaluation—To quantitatively evaluate success at recovering the 

periods during which subjects were performing the same mental task, we used the adjusted 

rand index (ARI) (Hubert and Arabie, 1985). The ARI measures the quality of data-driven 

clustering (k-means) against an existing gold-standard (experimental tasks). It ranges from 1 

to below 0, with 1 indicating perfect recovery of clusters. Ranges established in the literature 

describe an ARI > 0.9 as excellent, 0.9 > ARI > 0.8 as good, 0.8 > ARI > 0.65 as moderate, 

and ARI < 0.65 as poor recovery, respectively (Steinley, 2004).

Clustering was attempted under two scenarios: (a) considering all available windows; and 

(b) after removal of all non-task homogenous windows (e.g., those spanning one or two 

tasks plus instruction periods). Independently of the scenario, the ARI was computed only 

considering task-homogenous windows. In other words, no matter which windows entered 

the k-means analysis, the ARI was computed only based on the grouping of task-

homogenous windows as those are the only ones for which an unambiguous correct answer 

clearly exists.

Decoding Evaluation—Decoding was performed using two different topic sets: 50 and 

400 cognitive topic sets. These two sets contain one or more topics that strongly relate to the 

four tasks under scrutiny. For example, within the 50 topic-set, only one topic (TOPIC 022) 

contains the terms “memory”, “working memory”, “wm”. Accordingly, decoding success for 

the MEMO segments is quantified in terms of the decoding ranking for TOPIC 022. 
Similarly, within the 400 topic-set, two topics (TOPIC14 and TOPIC376) contains those 

terms. In this case, decoding success for MEMO segments will be quantified considering the 

average decoding ranking for these two terms. Suppl. Tables 1 and 2 list the “correct” topics 

for our four tasks in the 50 and 400 topic-set, respectively. Neurosynth reverse inference 

maps for all “correct” topics are displayed on Supplementary Figures 3 (50-topic set) and 4 

(400-topic set).

Decoding accuracy was evaluated quantitatively using the ranking accuracy (RA) metric 

(Pereira et al., 2018), which has the desirable property of attributing partial credit 

proportional to how close the correct answer is to the top of the ranking; therefore providing 

a more nuanced picture than accuracy. Rank accuracy is defined as follows for a given 

subject (s) and task (t):
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RAs, t = 1 −
RankCorrectt − 1

Ntopics − 1

where Ntopics is the number of topics in the set (e.g., 50 or 400), and RankCorrectt is the 

decoding rank for the correct topic. One limitation of the rank accuracy metric, derived from 

its reliance on rankings, is its inability to provide information regarding actual decoding 

strength values (i.e., is the correct topic ranked high even though the decoding strength is 

low). Therefore, we also report the mean and standard deviation of decoding strengths for 

correct topics across the multi-task population.

The p-value for each mean rank accuracy score across subjects was obtained using draws 

from the distribution under the null hypothesis of chance performance (uniform rank 

position). Given a sample of null results for each subject, we computed the mean across 

subjects, to yield a null distribution for the mean score. The p-value for the actual rank 

accuracy score was the probability mass in the tail for values greater than or equal to that 

score. When there is more than one correct topic, RankCorrectt refers to the average 

decoding rank across all those correct topics.

Visualization of Windowed Connectivity

Windowed connectivity matrices, following vectorization contain thousands of elements, 

and consequently are hard to visualize; even with high-dimensional visualization tools such 

as parallel coordinate plots (Inselberg and Dimsdale, 1990) or star glyphs (Chambers, 1983). 

In such high dimensional scenarios, an alternative for aiding with visualization is to use 

manifold learning to bring the data into a 2 or 3-dimensional spaces while preserving, as 

much as possible, the structure of the data in its native high-dimensional space. Here, we use 

one particular manifold learning technique, Laplacian Eigenmaps (LE; (Belkin and Niyogi, 

2003)), to help interpret results and compare between rest and task conditions. Laplacian 

embeddings were chosen because of their computational tractability, their interpretational 

value from a clustering perspective, and because they place emphasis on the preservation of 

local geometry in the higher dimensional originating space.

Laplacian eigenmaps were computed with the scikit-learn Python library (Abraham et al., 

2014). The algorithm for the computation of the embeddings proceeds as follows. First, an 

affinity matrix for the data in the original high dimensional space was computed using the k-

nearest neighbor algorithm (NN = 100) and correlation distance as the dissimilarity metric 

(to be consistent with the k-means portion of the study). This provides the algorithm with a 

network-like representation of the data. Next, the algorithm computes the Graph Laplacian 
Matrix of the affinity matrix. Finally, an eigenvalue decomposition of the Graph Laplacian is 

done to estimate the embedding dimensions.

It is important to notice that the NN parameter can affect the resulting embeddings. Several 

NN values, ranging from NN=25 to NN=250, were evaluated in the multi-task dataset. For 

all NN values equal or greater than 75, the embeddings contained the structures discussed 

throughout the manuscript (i.e., clusters of task-homogenous windows at distal spokes, task 

inhomogeneous windows forming trajectories between sub-spaces occupied by the initial 
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and ending task). All embeddings reproduced here are for NN=100. For NN below 75, the 

embeddings were able to solely capture temporal autocorrelation, resulting in “spaghetti-

like” structures with windows ordered simply according to time; but not otherwise 

meaningful configurations.

Operations on Low Dimensional Embeddings

Community Detection—To help evaluate the structure of the data in the low 3D space, 

we decided to estimate affinity matrices separately for each subject, once transformed to this 

low dimensional space. Each cell on those embedding affinity matrices represents the 

Euclidean similarity (1 / [1 + Euclidean distance]) between the location for two snapshots in 

3D space.

In addition, these affinity matrices were used as input to a community detection algorithm to 

estimate the number of communities—namely groups of tightly grouped snapshots, 

separated for the rest of the set—present in the data. For the community detection step, we 

relied on the “community detection for NetworkX” python library (https://github.com/

taynaud/python-louvain), which implements the Louvain method described in Blondel et al. 

(2008). Analyses were conducted using default parameters (resolution=1) for the 

best_partition function.

Corner Detection—Groups of elements at distal corners of Laplacian embeddings are 

known to signal the presence of meaningful clusters in the data (Belkin and Niyogi, 2003). 

Automatic detection of corners for the embeddings of the rest-only dataset proceeded as 

follows. For each subject, we found the x most distal windows in the embedding (in terms of 

Euclidean distance), with x being equal to the number of FC-states. Next, for each distal 

end, we selected all windows sitting within a given distance d from it (d = average inter-

snapshot distance for all task-homogenous windows in the multi-task dataset). This 

procedure allowed us to automatically identify sets of spatially contiguous snapshots sitting 

near the distal ends of the embeddings.

Data and Code Availability Statement

The multi-task dataset is publicly available in the XNAT Central repository (Project ID: 

FCStateClasif). The rest data used in this work is part of the Human Connectome Project. 

Analyses were conducted with publicly available packages, including: AFNI, MATLAB, 

Python, scikit-learn and the NeuroSynth Python API.

RESULTS

FC States and Cognition in Multi-task Scenario

After pre-processing, FC states were estimated for the multi-task dataset. We performed 

these analyses under two different scenarios: (a) using only task homogenous windows—

namely those that fall completely within the temporal span of individual task blocks (as was 

previously published (Gonzalez-Castillo et al., 2015)); and (b) using all available windows, 

which also include windows spanning more than one task block. The goal of comparing 

these two scenarios is to evaluate to what extent having cognitively inhomogeneous 
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windows may affect our ability to correctly segment the multi-task scans. On average (see 

Suppl. Fig. 2), FC states faithfully recovered task timing in both scenarios: ARI = 0.89 

± 0.18 for the case when all windows entered the analyses; and ARI = 0.97 ± 0.10 when 

only task homogenous windows are considered. Yet, there was a significant difference in 

ARI across scenarios (T=2.25; p=0.02). For the “all windows” scenario, which is the 

primary focus here, 5 subjects out of 20 had an ARI < 0.8 (moderate or poor).

Figure 1.A & D show FC timelines, in the “all windows” scenario, for two representative 

subjects with different levels of success at reproducing task timing structure. In these 

timelines, windows are represented as dots, with their X-axis position indicating time, and 

their Y-axis position indicating FC state assignments. Underlay colors provide a visual 

reference for the task that subjects were performing during each window (grey = rest, blue = 

memo, yellow = video, green = math, white = more than one task). Fig. 1.A shows a case 

with perfect agreement (ARI=1) between FC states and mental states dictated by tasks. Fig 

1.D shows a case where recovery was poor (ARI=0.46) and FC states extended across 

contiguous tasks independently of their distinct cognitive demands.

Next, 3D visualizations of windowed connectivity for each subject (Fig. 1.B & E) were 

generated via Laplacian Embeddings (Belkin and Niyogi, 2003; Thirion and Faugeras, 

2004). In these visualizations, each snapshot of windowed connectivity is represented as a 

color-coded point in 3D space. The color of a snapshot informs us about the task, or tasks, 

occurring during its temporal span (grey = rest; green = math; blue = memo; yellow = visual 

attention; white = more than one task). The location of snapshots in these embeddings is 

solely a consequence of their pair-wise similarity. Task information is only used for coloring 

purposes, to aid with visualization, but does not contribute to the computation of the 

embeddings. For subjects whose FC states faithfully reproduced task states (ARI > 0.8), we 

observe that task homogeneous snapshots cluster together into “spoke” formations (red 

arrows)—one “spoke” per task—that extent away from the center of the embedding; while 

transition-snapshots (white dots; those spanning across tasks) form links between those 

spokes that go through the center of the embedding. This type of structure is less well-

defined in instances of poor agreement between FC states and tasks (Fig. 1.E). Fig. 1.C & F 

show affinity matrices for the embeddings depicted in Fig. 1.B & E. In these matrices, a 

given cell represents the Euclidean similarity (1 / [1 + Euclidean distance]) between the 

location for two snapshots in 3D space. Fig 1.C shows a matrix with clear blocks of high 

affinity for task homogenous snapshots, in agreement with its originating embedding (Fig 

1.B). This pattern becomes even more apparent when we average affinity matrices for all 15 

subjects with ARI > 0.8 (Fig. 1.G).

Data-driven estimation of number of FC States

One limitation of FC states as a model for dFC stems from the use of unsupervised 

clustering (most commonly k-means (Lloyd, 1982)) for their estimation, which often 

requires the experimenter to provide an a-priori estimation for the number of FC states (e.g., 

how many clusters should k-means generate). Although data-driven techniques, such as the 

elbow criterion, can be used to estimate this hyper-parameter; their effectiveness is limited 

when applied to fMRI data (Shakil et al., 2016). Given how well the affinity matrices for the 
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3D embeddings presented in Fig. 1 represent the task structure of the multi-task scans, we 

decided to apply a Louvain community detection algorithm (Blondel et al., 2008) to each 

subject matrix to estimate the number of separate communities (e.g., tasks or FC states) 

present in the data. For 17 out of 20 subjects, the algorithm predicted 4 communities (in 

agreement with the number of distinct tasks). For the remaining 3 subjects (one of them 

being the one depicted in Fig 1.D-F) the algorithm estimated the presence of 3 communities.

Cognitive Correlates of FC States in the Multi-task Scenario

Cognitive decoding of FC states proceeded in two steps: 1) computation of a representative 

“activity” map for each FC state and 2) mapping from “activity” map into ranked lists of 

cognitive processes. This two-steps process was necessary for circumventing the lack of 

systems able to directly map FC matrices into cognitive processes.

Fig. 2 and Suppl. Fig. 5 show decoding results for two representative subjects using the 400-

topics set (Fig. 2) and the 50-topics set (Supp. Figure 5). Both figures have the same 

structure. Panel A shows FC state timelines. Panels B-E shows “activity” maps for each FC 

state. Panels F-I show decoding results per FC state both as a table listing the top-five topics 

with the highest decoding strength and as cloud plots with the distribution of decoding 

strength across all available topics. For qualitative evaluation purposes, the location of 

correct topics (i.e., those with the most direct relationship to the task; see Suppl. Tables 1 & 

2) are clearly marked for all FC states in panels F-I. In particular, for Sbj17 (Fig. 2), we can 

observe how the FC state timeline faithfully follows the experimental task timing (ARI=1.0). 

For this subject, FC state 1 spanned periods of MATH and FC state 2 periods of the MEMO 

task. Activity maps for these two states contain prominent clusters of activity in dorsolateral 

pre-frontal cortex and parietal regions (Fig. 2.B & C); consistent with tasks with a heavy 

working memory component. Similarly, FC state 3, which overlaps in time with the visual 

attention task (VIDEO), has prominent areas of activity around the MT/V5 region and other 

visual regions in ventral temporo-occipital cortex (Fig. 2.D). Finally, for FC state 4—which 

spans rest periods—we observe activity in regions of the default mode network (Fig. 2.E). 

As for the actual decoding, for FC states 1 and 2, we observe topics with terms such as 

“memory”, “working”, “arithmetic”, “calculation” and “numbers” among the top decoding 

topics (Fig 2.F & G). For FC state 3 (VIDEO), top topics include the terms “visual”, 

“motion”, “biological”, “moving” and “scenes” (Fig. 2.H). Finally, for FC state 4 (REST), 

the three topics that best describe rest (see Suppl. Table 2) appear as the top three decoding 

terms for this FC state (Fig 2.I). Similar results can be seen in Suppl. Fig. 5 when decoding 

was done using the 50-topics set on a different representative subject.

Mean and standard deviation decoding strength values for correct topics across the multi-

task population were 0.18 ± 0.08 (400-topics set) and 0.19 ± 0.10 (50-topics set). Fig. 3 

shows group-level task decoding results. Fig. 3.A-B show rank accuracy (Pereira et al., 

2018)—a measure of how often the correct topics appeared at the top of the decoding rank—

for all task segments and subjects as colored dots, and across-subject mean rank accuracy 

per task as grey bars for the 50-topics set (Fig. 3.A) and the 400-topics set (Fig. 3.B). Mean 

rank accuracy was above 0.8 for all tasks for most subjects. Worse decoding results were 

obtained for the visual attention (VIDEO) task when using 50-topics. Overall, decoding was 
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more successful when using the 400-topics set relative to the 50-topics set; this despite a 

large increase in the ratio of wrong-to-correct choices. In all instances, mean rank accuracy 

was significantly higher than chance (p<0.05; see SI for details). Figure 3.C-J show average 

cumulative distributions of decoding strength for the different tasks (black curves). In 

addition, individual decoding strength for correct topics are depicted as dashed colored lines. 

A colored continuous bold line marks the mean correct decoding strength across all subjects. 

In all instances, except for VIDEO using the 50-topics set (panel 3.E), the mean decoding 

strength for correct topics fell to the right of 95% of the cumulative distribution of decoding 

strengths (shaded region).

Periods of Distinct Cognition during Rest

Next, we applied the same methods to a subset of twenty 15 mins-long eyes-open resting 

scans acquired on a different 7T system part of the HCP (Van Essen et al., 2013). Subjects 

were selected to minimize motion and sleepiness confounds (detailed selection criteria in SI 

materials). Suppl. Fig. 6 show traces of windowed eye closure times per subject. It can be 

observed that all subjects remained awake for the whole scan duration. Supp. Fig 7 shows 

traces of absolute and relative motion for all 20 subjects. Average absolute motion was 0.27 

± 0.18 mm, and average relative volume-to-volume motion was 0.10 ± 0.07 mm.

Figure 4 summarizes results of these analyses for one representative resting subject (sbj05). 

Panel A shows the 3D embedding for this subject, with connectivity snapshots colored by 

FC state (3D embeddings for all rest subjects in Suppl. Figure 8.A). Number of FC-states for 

the rest datasets varied between three and four. Large inter-subject variability in 3D 

embedding patterns can be observed in Suppl. Fig. 8.A for this second dataset. Although 

“spoke-like” structures are present for some subjects (e.g., the one in Fig. 4), this motif is 

not as prominent as in the multi-task dataset (Supp. Fig. 8.B). Moreover, FC-states in rest 

scans do not necessarily align with distinct spokes in the same manner they did in the multi-

task scans (e.g., in Fig. 4.A, FC1 extends into a second spoke that is shared between FC1 

and FC4). Panel 4.B shows the affinity matrix for the 3D embedding shown in 4.A. Dashed 

lines identify the confines of estimated FC-states, which were very similar in size and 

contain only temporally contiguous windows. This behavior was common across the 

majority of rest scans, suggesting that FC-states did not fully capture the structure depicted 

by the corresponding 3D embeddings.

Panels 4.C-F show “activity” maps for all four FC-states detected in sbj05. Activity maps are 

very similar across states, particularly for FC-states one, two and three. Panels 4.G-J show 

corresponding distributions of decoding strength per FC-state for the 400-topics set. 

Distributions are often narrower than in the multi-task scenario, suggesting fewer topics 

show strong positive associations with activity maps. This is particularly clear for FC states 

one and two, whose top-ranking terms have decoding strengths below 0.1. This same 

narrowing effect can be observed at the group level by looking at group-averaged 

distributions of decoding strength (Fig. 5.A). Average distributions are wider and have 

longer tails for the multi-task dataset (red) than for the rest dataset (black). We quantified 

this effect by looking at the number of topics that constitute positive outliers for each FC-

state (i.e., those above the third quantile plus 1.5 times the interquartile range) in both 
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scenarios. We found that there are significantly more outlier topics for the multi-task dataset 

than the rest dataset (T=2.74; p=0.007).

Lastly, to explore if observable spoke-like structures in pure rest embeddings correspond to 

periods of distinct cognition—even if automatically estimated FC states were not able to 

effectively capture them—we decided to apply our cognitive state decoding method focusing 

only on windows sitting at the distal ends of rest 3D embeddings. For each subject, we found 

the x most distal windows in the embedding (in terms of Euclidean distance), with x being 

equal to the number of FC-states. Next, for each distal end, we selected all windows sitting 

within a given distance d from it (d = average inter-snapshot distance for all task-

homogenous windows in the multi-task dataset). This procedure allowed us to automatically 

identify sets of spatially contiguous snapshots sitting near the distal ends of the embeddings. 

Fig 4.K shows the output of this procedure for sbj05. Both 3D plots in the panel show the 

same data viewed from different angles. Suppl. Fig. 9 shows the same information for all 

rest subjects. Next, we took these newly defined groups of windows and proceeded with the 

cognitive decoding step. Fig. 4.L-O show activity maps for the four groups of windows 

sitting at distal ends of the embedding for sbj05. Activity maps are now more clearly 

differentiable across clusters. The map for Spoke01 shows activity in lateral parietal and 

frontal regions. The map for Spoke02 has activity mostly focused on sensory motor regions. 

The map for Spoke03 presents strong activity in occipital, limbic and insular regions. And, 

finally, the map for Spoke04 shows activity primarily concentrated in the calcarine region. 

Fig 4.P-S shows corresponding decoding results. Distributions now have widened and have 

longer tails, suggesting activity maps are now more strongly associated with distinct topics. 

This effect is also appreciable at the group level (Fig 5.A – blue trace). Consequently, 

decoding strengths for top topics are larger; with all top 5-topics having R > 0.1. Moreover, 

top topics are now associated with distinct cognitive domains. For example. Spoke01 
contains topic associated with numeric mental activity (e.g., 

“arithmetic_calculation_mathematical” and “number_numerical_numbers”). Spoke02 seems 

to encompass periods of strong somatosensory activity, as indicated by the terms 

“motor_sensory_areas”, “motor_finger_movements”, “movement_movements_motor”, etc. 

Finally, Spoke03 and Spoke04 point to scan segments dominated by strong visual activation 

perhaps associated with visual imagery.

Across all subjects, out of the 400 available topics, only 78 topics became positive outliers 

for one or more spokes. Fig 5.B lists the top 15 topics most commonly marked as outliers. 

This includes topics clearly associated with pure rest (topics 13, 337, 233, 215), thinking 

about the past or future (topics 309 and 188), theory of mind (topic 269), language/inner 

speech (topic 214), self-evaluation (topics 159 and 369), mental computations (topics 113 

and 376), and visual activity (topic 110). Those all correspond to cognitive domains 

previously reported as describing the types of mental processes subjects commonly engage 

with during rest (Delamillieure et al., 2010; Diaz et al., 2013; Hurlburt et al., 2015). Finally, 

Fig 5.C provides a summary view of all topics marked as positive outliers for spoke-like 

structures in pure rest scans. Topics are grouped into the above-mentioned cognitive 

domains describing resting mental activities. Approximately 75% of topics fall within one of 

these categories: resting (17.87%), somatosensory (9.89%), episodic/planning (9.51%), 
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theory of mind (9.13%), language/speech (9.13%), visual/imagery (9.13%), self (8.37%), 

music (0.4%) and sleepiness (0.4%).

DISCUSSION

Resting dFC is an empirically observed phenomenon with promising translational value 

(Calhoun et al., 2014; Gonzalez-Castillo and Bandettini, 2018) for which several 

methodological and mechanistic questions remain unresolved (Keilholz et al., 2017). We 

address some of them here. First, we show evidence in support of the hypothesis that on-

going self-paced cognition is a contributor to dFC phenomena during rest, although the 

degree of contribution may vary across subjects, as well as across cognitive domains. 

Second, we demonstrate that data-driven estimates of FC states based on fixed-sized sliding 

window approaches—one of the most prominent modeling approaches for dFC—do not 

always capture periods of distinct cognitive processing during rest, even though FC states 

robustly align with cognitive processes imposed by external task demands (i.e., multi-task 

scenario). Overall, our results highlight the cognitive relevance of resting dFC, how a single 

FC static structure may not be sufficient to capture the diversity of cognitive processes 

occurring during rest, and the need to update the definition, computation and thus 

interpretation of FC states, especially when it comes to how they may relate to cognitive 

processing during rest.

Cognition contributes to observable dFC during Rest

Snapshots of time-varying FC spanning task-homogenous periods in the multi-task scenario 

clustered together at the distal ends of spoke-like structures in the 3D embeddings (Fig. 1; 

Suppl. Fig. 8.B). This motif of similar elements sitting together at corners of Laplacian 

embeddings has been previously reported for different domains, including speech (Belkin 

and Niyogi, 2003) and neuronal spike sorting (Chah et al., 2011). For the HCP rest scans, 

similar structures could be observed in a subset of subjects, suggesting the presence of 

isolated periods of homogenous FC distinct from other portions of the scan. Moreover, 

reverse-inference results suggest that such periods are associated with different types of 

task-like cognition (Figs. 4 & 5), although definitive validation would require behaviorally 

annotated (e.g., via experience sampling (Kahneman et al., 2004)) resting datasets (please 

see next paragraph and the limitations section below). Overall, these results support our 

working hypothesis that covert on-going cognition affects short term estimates of FC in a 

similar manner to how overt externally imposed cognition does (Gonzalez-Castillo et al., 

2015); and, subsequently, that cognitively meaningful dynamics can be a contributing factor 

to resting dFC.

In the multi-task scenario, we were able to objectively validate cognitive inferences. 

Unfortunately, our ability to do so for rest scans is severely limited. Nonetheless, the 

cognitive processes inferred for spoke-like structures in rest embeddings agree with previous 

reports of the most common mental operations subjects undertake during rest (Delamillieure 

et al., 2010; Diaz et al., 2013; Hurlburt et al., 2015), and different spokes tend to be 

associated with a different set of mental processes (Fig. 4). Future work should better 

validate the neural accuracy of the cognitive mappings. For example, concurrent skin 
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conductance, electromyography and video recordings of subjects in the scanner bore may 

help validate inferences regarding periods of somatosensory activity, self-generated body 

movements (Tan et al., 2017) or strong emotional content. Additional validation may be 

possible using rest scans accompanied by retrospective descriptions of subject’s mental 

processes during the scan. Delamillieure et al. (2010) suggested that subjects can be grouped 

according to the most prominent type of mental activity they conduct while resting. Future 

work should evaluate if similar groupings can be obtained on the basis of retrospective 

reports and data-driven decoding. Finally, dFC phenomena of limited complexity have been 

reported in the absence of consciousness (Amico et al., 2017; Barttfeld et al., 2015). Should 

spoke-like structures in dFC embeddings be the manifestation of covert cognitive processes, 

those structures should dissolve for rest scans conducted under deep anesthesia.

The timing and nature of cognition occurring during rest is heterogenous across subjects 

(Delamillieure et al., 2010; Hurlburt et al., 2015). The same is true for other postulated 

contributing factors such as arousal, motion or sleep. The embeddings presented here 

demonstrate that resting dFC is quite heterogenous across subjects even when both motion 

and sleep contributions were minimized via sample selection. Future work should help 

isolate all these factors and quantify their relative contributions at the individual subject 

level. For example, templates of regional activity correlated with pupil dilation may help 

isolate the contributions of arousal (Chang et al., 2016). Such quantification efforts are key 

for merging current discrepant views on the origin of rest dFC. As previously mentioned, 

Laumann et al. (2017) recently stated that rest dFC is primarily the result of sampling 

variability, arousal fluctuations, sleep and motion. One supporting argument made by the 

authors was the observation of limited changes in multi-variate kurtosis for pure rest scans 

as compared to task/rest alternating scans (Fig. 6 in (Laumann et al., 2017)). Yet, reported 

histograms of multi-variate kurtosis for pure rest scans (blue) have a long right tail and bump 

that overlaps with the kurtosis distribution for alternating task/rest scans (green and red 

traces). Our results suggest that cognition may contribute to resting dFC differently across 

subjects, with potentially negligible contribution in some subjects (those with very diffuse 

spokes). It could be argued that the right tail of the distribution of multi-variate kurtosis 

values reported in (Laumann et al., 2017) for pure rest (Fig 6, blue trace) represents the 

presence of a limited group of subjects with strong contributing on-going cognition. 

Moreover, assessing the contribution of different factors will not only help settle this 

argument, but also understand the origin of previously reported systematic differences in 

dFC across normal and patient populations (Damaraju et al., 2014; Falahpour et al., 2016; 

Wee et al., 2016). For example, it may be the case that differences in both static or dynamic 

estimates of FC across populations are not solely indicative of differences in intrinsic 

patterns of connectivity but may be also contributed by subjects from different populations 

engaging systematically into different forms of cognitive processing as they lay inside the 

scanner. For example, depressed patients may engage more often in regurgitative thinking; 

while a different population may be more prone to perform mathematical computations as a 

form of distraction while being scanned.
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Open-ended Cognitive Inference for fMRI Scans

Here we describe and test a pipeline for blindly inferring periods of distinct cognition 

occurring during fMRI scans. The primary components of the pipeline are: 1) dFC estimates 

are used to temporally segment scans into FC homogenous periods; 2) hemodynamic 

deconvolution is used to generate activity-like maps for each period; and 3) activity-based 

reverse inference is used to deduce the cognitive processes occurring during those periods. 

All these steps can be performed on individual scans and require no training dataset. As 

such, decoding is not limited to group-level inferences and the breadth of cognitive states to 

be inferred is ultimately set by the breadth of the neuroimaging literature mined by the 

NeuroSynth platform.

Nonetheless, each of these steps set limitations regarding the specificity and sensitivity of 

resulting inferences. For example, the temporal segmentation step is designed to 

accommodate more than one cognitive state per scan. Unfortunately, the present results 

suggest its ability to effectively do so in a meaningful manner is limited to externally 

imposed cognition. Similarly, the correctness of the hemodynamic deconvolution step will 

depend on the degree of correspondence between canonical and actual hemodynamic 

response shapes (which will vary per location and subject). Errors in the estimation of 

activity levels may occur for regions where actual hemodynamic responses differ the most 

from the model provided to the SPFM algorithm—even though the SPFM algorithm shows 

certain robustness against mismatches in the shape of the HRF (Caballero Gaudes et al., 

2013); which in turn will affect the efficacy of the decoding. Finally, limitations inherent to 

the NeuroSynth platform—such as limited specificity of topics, vocabulary biases and 

inability to incorporate priors that may help contextualize predictions (e.g., this scan 

corresponds to a subject under sedation) also apply here (Rubin et al., 2017; Yarkoni et al., 

2011) also apply. Moreover, the Neurosynth platform was chosen here because it provides an 

open-ended decoding engine; yet it must be kept in mind that its breadth is limited to the set 

of mental processes sampled by the literature in its database; which, to a large extent, is 

driven by task studies. One key assumption in our work is that manifestations of a given 

mental state (e.g., mental arithmetic) share the same neuronal code—as captured by fMRI—

in both task-cued and task-free (rest) scenarios. Although, previous work on affective 

content suggests this is a valid first approximation (Tusche et al., 2014), one can expect 

subjects to engage on certain cognitive processes unique to rest (e.g., spontaneous initiation 

of thought), which Neurosynth may decode incorrectly. Similarly, perceptual decoupling (a 

signature of some mind-wandering processes (Smallwood and Schooler, 2015) and 

overlapping unconscious intrinsic brain activity (Kucyi, 2018) may also constitute 

significant confounds affecting the correctness of the decoding in some instances. In a recent 

review on the relationship between dFC and mind-wandering, Kucyi (2018) poses the 

following question: “to what degree do spontaneous changes in network states reflect 
intrinsic activity, and to what degree do such changes reflect an individual’s current 
behavioral state?”. The contributing ratio of these two components to dFC and how they fuse 

in fMRI recordings (e.g., linear vs. non-linear, mostly parallel vs. mostly sequential) will 

affect the quality of our inferences. Nonetheless, we expect that by focusing only on strongly 

distinct and homogenous periods of connectivity signaled by the spoke structures present on 

the low dimensional embeddings, we are capturing fluctuations in dFC mostly driven by the 
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second component—namely individual current behavioral states—and therefore Neurosynth 

inferences to be appropriate.

Future developments should help address many of these limitations. For example, multi-

echo fMRI can improve the accuracy of the deconvolution (Caballero-Gaudes et al., 2019); 

and improved probabilistic decoding frameworks may increase the specificity of the 

inferences (Rubin et al., 2017) by providing researchers with the ability to generate context-

sensitive interpretations of whole-brain activity maps. In addition, it will be valuable to 

develop systems able to directly map FC matrices into cognitive states in an open-ended 

fashion, erasing the need to generate representative “activity” maps for each FC state as an 

intermediate step. The development of such systems is intricate given the diversity of brain 

parcellations used to compute functional connectivity matrices and the fact that matrices 

tend to be reported only in graphic form—i.e., images—and not as numerical arrays. 

Developments in image recognition that could automatically mine and transform images of 

FC matrices into numerical arrays, and novel meta-analytic tools able to merge connectivity 

information from diverse parcellations may make those systems readily available in the near 

future.

FC states as a Model for Resting dFC

FC states currently constitute a mainstream approach to model, summarize, and report 

within-scan dFC. Repeatedly, researchers have reported on the behavioral (Gonzalez-

Castillo et al., 2015; Sadaghiani et al., 2015) and clinical relevance (Damaraju et al., 2014; 

Li et al., 2014) of this model. Yet, FC states present important limitations resulting from the 

use of fixed-size sliding windows and k-means as key steps in their estimation. First, the FC-

states framework commonly assumes that dFC is effectively characterized in terms of a 

limited set of distinct FC configurations (those detected by k-means). As the multi-task 

embeddings demonstrate (Fig 1), even if that were true, the limited temporal resolution of 

sliding windows will often result in adulterated FC estimates—spanning several unique 

cognitive configurations—that sit at interspaces between clusters (white dots) and diffuse 

true clustering structure in the data (task-colored dots). Because k-means enforces 

membership (all inputs must be assigned to a cluster) and tends to generate clusters of equal 

size when true cluster structure is diffused or missing, k-means is not effective at capturing 

periods of distinct FC in the rest scenario (Fig. 4.A). This is clearly exemplified by the fact 

that, for the multi-task scenario, the ARI significantly decreased when all overlapping 

windows enter the analysis relative to when only task-homogenous windows do (Suppl. Fig. 

2). To avoid such issues, future FC state modeling should rely on variable size windows that 

align with FC transitions (Jia et al., 2014) or rely on non-windowed estimates of time-

varying connectivity such as dynamic conditional correlation (Lindquist et al., 2014). In 

addition, modeling approaches than can accommodate for both multiple membership (e.g., 

one element can be part of two or more different clusters) and null membership (inputs may 

be assigned to no cluster at all) should also be adopted. Examples of such models include the 

use of principal component analysis (Leonardi et al., 2013; Leonardi et al., 2014), dictionary 

learning (Li et al., 2014), and temporal independent component analysis (Miller et al., 2016). 

More importantly, future research should elucidate whether dFC should be conceptualized as 

a continuous or discrete phenomenon (Hansen et al., 2015). Ultimately, it may be that a 
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hybrid framework able to accommodate both the presence of discrete, transient meaningful 

configurations (signaling distinct periods of cognition or sensory activity whenever present) 

and underlying meta-states (potentially capturing intrinsic maintenance and exploratory 

processes) may be the most appropriate conceptualization (Karahanoglu and Van De Ville, 

2015; Petridou et al., 2013). In fact, Roberts et al. (2019) have demonstrated that metastable 

states and waves are compatible dynamical regimes for the human connectome and can be 

explained with a unified mechanism.

Finally, it is worth mentioning that ours is not the only approach one can use to generate 

meaningful “activity-like” summary views for portions of an fMRI scan when timing 

information about cognitive processes is missing. For example, Karahanoglu et al. (2015) 

proposed the use of innovation co-activation patterns (iCAPs) to describe transient activity 

patterns in resting state scans. Moreover, groups of iCAPs—as generated by hierarchical 

clustering based on temporal overlap—showed a relationship with broad behavioral profiles 

(i.e., action, cognition, perception, interoception and emotion) obtained using the BrainMap 

database (Fox and Lancaster, 2002). Despite differences in the deconvolution operation 

(SPFM assumes isolated events, while Total Activation (Karahanoglu et al., 2013) looks for 

temporally contiguous blocks of activity), and in the decoding engine (NeuroSynth vs. 

BrainMap); our results, and those of Karahanoglu and colleagues (2015), suggest that 

multiple functional connectivity and activity maps are needed to describe the richness of 

resting state data, especially if one seeks to capture the multiple mental states subjects 

navigate through while they “rest” in the scanner.

Extensions to Prior Work, Limitations, Future Directions

Our original study conducted on this multi-task dataset demonstrated that FC states derived 

from non-overlapping task-homogenous windows robustly recovered temporally disjoint 

periods of homogenous cognition (Gonzalez-Castillo et al., 2015). Here we extend those 

results in several ways. First, we demonstrate a robust data-driven way to infer the number 

of states (i.e., tasks) using affinity matrices in the embedded 3D space. In our original work, 

the number of states was provided by the experimenters. Second, we not only describe a way 

to temporally segment multi-task scans into task homogenous periods, but also how to 

deduce the cognitive processes underlying those periods in an open-ended fashion that 

requires zero timing information or training data. Third, we demonstrate that those results 

can be accomplished even if overlapping task-inhomogeneous windows enter the analyses. 

In the original study, the onset/offset times of task blocks were used to restrict analyses to 

only task-homogenous non-overlapping windows.

Several limitations, in addition to those regarding imperfect ability for validation in the 

resting scenario, apply here. First, dFC phenomena most likely resides on a higher 

dimensional space beyond three dimensions. Three dimensions were selected for the current 

analyses because of their representational ease and because they were able to capture task 

structure much better than their 2D counterparts (Supp. Fig. 10). Yet, 3D embeddings were 

not able to explain all clustering errors. For example, Fig. 1.D&E shows an example of how 

3D embeddings were able to capture the proximity of snapshots from the first MEMO, 

VIDEO and MATH blocks in the original higher dimensional space leading to their 
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mistakenly joint membership to FC-State 1; but failed at capturing the same information 

regarding the mistaken joint assignment of windows from the second MATH and VIDEO 

blocks to FC-state 3. Higher dimensional spaces may better capture all relationships of 

interest as they will not distort original pair-wise relationships so abruptly. Yet, tools for 

visualizing such spaces are limited and may be difficult to interpret. Future work should 

evaluate the effectiveness of working with higher dimensional spaces, and the ability of 

visualization tools such as parallel coordinates (Inselberg and Dimsdale, 1990) and glyphs 

(Chernoff, 1973) to render meaningful representations of dFC in such higher dimensional 

spaces. In addition, future studies should evaluate the ability of other manifold learning 

methods, such as T-SNE (Van der Maaten and Hinton, 2008), to aid in the visualization and 

interpretation of dFC phenomena during task and rest. A second limitation of the current 

study is that we only worked with one implementation of FC-states. We previously 

demonstrated that methodological decisions can significantly alter the strength of the 

relationship between FC-states and cognitive states dictated by tasks (Gonzalez-Castillo et 

al., 2015). As alternative methods to estimate FC-states exist in the literature (Allen et al., 

2014; Leonardi et al., 2014), future work should elucidate how well our conclusion of 

limited ability of FC-states to capture periods of distinct cognition during rest generalizes to 

these other variants of FC state modeling.

Regarding the proposed procedure for data-driven estimation of the number of states, we 

note that community detection on the embedding’s affinity matrix—a key step in this 

procedure—was conducted with default parameters. Such defaults may not be optimal. For 

example, a random graph model may not be appropriate for matrices whose edges denote 

statistical relationships such as correlations or Euclidean distance (the case here). In its 

current configuration, the algorithm resulted in a number of communities that agrees, in the 

majority of the subjects, with the number of tasks present in the multi-task dataset. The 

ability of the algorithm to detect the correct number of mental states or tasks under other 

circumstances must be evaluated and compared to other methods commonly used to estimate 

the number of clusters in datasets, such as the elbow criteria or the gap statistic (Tibshirani et 

al., 2001).

Despite the above-mentioned limitations, we believe that the current results advance our 

understating of dFC during both rest and task. They provide evidence in support of the 

hypothesis that resting dFC includes manifestations of covert cognition; suggesting that 

several different behaviorally relevant whole-brain FC configurations may occur during a 

single rest scan. In addition, we confirmed that data-driven estimates about the cognitive 

nature of most common mental processes occurring during rest agree with those inferred via 

retrospective questioning in other subject samples. Finally, our results also underscore how 

differences in effect size and temporal characteristics of externally-imposed and self-driven 

cognition may obstruct direct translation of methods and conclusions across both scenarios.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) FC state timeline, (B) 3D embedding, and (C) associated affinity matrix for one multi-

task subject that showed good agreement (ARI = 1.0) between FC-states and mental states 

dictated by task. In (A), the X-axis signals time in terms of window units, and the Y-axis 

indicates FC-sate membership. Snapshots of windowed connectivity are represented as black 

dots. Underlay colors provide a visual reference for the task that subjects were performing 

during each window (grey = rest, blue = memo, yellow = video, green = math, white = more 

than one task). (D-F) show equivalent information for a second subject with poor agreement 

(ARI = 0.46) between FC-states and mental states. (G) Group-level average affinity matrix 

for all subjects with ARI > 0.8 (15 subjects out of 20).
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Figure 2. 
Individual subject task decoding results for the 400-topics set. (A) Scan segmentation 

results. Each dot represents a snapshot of windowed connectivity. The position of the dot in 

the y-axis indicates to which FC-state the snapshot of windowed connectivity was assigned. 

Tasks periods are depicted as colored bands for reference (REST: gray; MEMO: blue; 

MATH: green; VIDEO: yellow). (B-E) Activity maps for each FC-state obtained with 

SPFM. (F-I) Decoding results in the form of cloud plots and top-five lists. Cloud plots depict 

the probability distribution of decoding strength values across all 400 topics for each FC 

state in the form of kernel density estimates (colored curves), swarm plots (colored dots; one 

per topic) and boxplots (black). In these plots the location of “correct” topics per task are 

clearly marked by boxed text with arrows. Finally, the tables on the right of the figure lists 

Gonzalez-Castillo et al. Page 27

Neuroimage. Author manuscript; available in PMC 2020 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the top 5 topics with the highest decoding strength for each FC state. Topic names are 

constructed using the top three terms associated with the topic.
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Figure 3. 
Group Evaluation of Task Decoding. (A) Rank accuracy for all subjects and tasks when 

using the 50-topics set. (B) Same as (A) but when using the 400-topics set. (C-F) 

Cumulative distribution of decoding strength values for the 50-topics set. Each panel shows 

results for a different task. The mean cumulative distribution across all subjects is depicted 

in black. Individual decoding strengths for the correct term are shown as dashed lines and 

the mean decoding strength across all subjects as a continuous line. In all panels, we mark 

the region that corresponds to 95% of the cumulative distribution with grey. (G-J) Same as 

(C-F) but for the 400-topics set.
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Figure 4. 
Cognitive decoding for one representative subject from the rest only dataset. (A) 3D 

embedding with connectivity snapshots colored according to automatically extracted FC 

states. (B) Affinity matrix for the embeddings in panel A. (C-F) Activity maps computed via 

SPFM for each of the FC states. (G-J) Distributions of decoding strengths for the 400-topics 

set and lists with the top-5 topics for each FC-state. (K) Same embedding as in (A), but this 

time colors signal the windows assigned to spoke-like structures following the procedures 

described in the SI materials. Two different views (different rotation angles) are presented to 

help better appreciate the structure of the embedding. (L-O) Activity maps computed using 

only the windows identified as members of spoke-like structures (e.g., non-white windows). 

(P-S) Distribution of decoding strengths for the maps shown in L-O.
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Figure 5. 
(A) Average decoding strength distributions for the 400 topic-set under three different 

scenarios: (red) FC-states detected in the multi-task dataset; (black) FC-states detected in the 

pure rest scenario; (blue) windows in the vicinity of spoke-like structures in the pure rest 

scenario. (B) List of the top 15 topics marked as positive outliers (e.g., signaled to have a 

strong relationship with provided activity maps) during the decoding of spoke-like structures 

in pure rest 3D embeddings. Topic names were constructed concatenating the topic ID in 

NeuroSynth with the three top terms part of the topic. The percentage on the right indicate 

the number of times the topic became an outlier relative to the total number of outlier 

detection in the whole sample. (C) Depiction of the distribution of outlier topics for spoke-
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like structures in the pure rest scenario grouped by cognitive domains previously reported to 

describe most common cognitive processes subjects engage with during rest.
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