
Classification of Functional Magnetic Resonance Imaging
Data using Informative Pattern Features

Francisco Pereira and Matthew Botvinick
Princeton Neuroscience Institute and Psychology Department

Princeton University, Princeton NJ 08542
{fpereira,matthewb}@princeton.edu

ABSTRACT

The canonical technique for analyzing functional magnetic
resonance imaging (fMRI) data, statistical parametric map-
ping, produces maps of brain locations that are more active
during performance of a task than during a control condi-
tion. In recent years, there has been increasing awareness
of the fact that there is information in the entire pattern
of brain activation and not just in saliently active locations.
Classifiers have been the tool of choice for capturing this in-
formation and used to make predictions ranging from what
kind of object a subject is thinking about to what decision
they will make. Such classifiers are usually trained on a se-
lection of voxels from the 3D grid that makes up the activa-
tion pattern; often this means the best accuracy is obtained
using few voxels, from all across the brain, and that differ-
ent voxels will be chosen in different cross-validation folds,
making the classifiers hard to interpret. The increasing com-
monality of datasets with tens to hundreds of classes makes
this problem even more acute. In this paper we introduce a
method for identifying informative subsets of adjacent vox-
els, corresponding to brain patches that distinguish subsets
of classes. These patches can then be used to train classifiers
for the distinctions they support and used as ”pattern fea-
tures” for a meta-classifier. We show that this method per-
mits classification at a higher accuracy than that obtained
with traditional voxel selection, and that the sets of vox-
els used are more reproducible across cross-validation folds
than those identified with voxel selection, and lie in plausible
brain locations.
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1. INTRODUCTION
Functional Magnetic Resonance Imaging (fMRI) is a tech-

nique used in psychological experiments to measure the blood
oxygenation level throughout the brain, which is a proxy for
neural activity; this measurement is called brain activation.
The data resulting from such an experiment is a 3D grid
of cells named voxels covering the brain (on the order of
tens of thousands, usually), measured over time as tasks are
performed and thus yielding one time series per voxel (col-
lected every 1-2 seconds and yielding hundreds to thousands
of points).

Traditionally, this has been used to contrast brain acti-
vation during a task of interest, e.g. reading words, with
activation during a related control condition, e.g. reading
nonsense words, with the goal of identifying brain locations
where the two differ. The most common analysis technique
for doing this – statistical parametric mapping [3] – tests
each voxel individually by regressing its time series on a
predicted time series determined by the task contrast of in-
terest. This fit is scored and thresholded at a given statisti-
cal significance level to yield a brain image with clusters of
voxels that respond differently to the two tasks (colloquially,
these are the images that show parts of the brain that “light
up”). Note also that, in tandem with this task-contrasting
activation, there are many other processes taking place in
the brain that will happen for both tasks : visual process-
ing to read the words, attentional processing due to task
demands, etc. The output of this process for a given experi-
ment is a set of 3D coordinates of all the voxel clusters that
appear reliably across all the subjects in a study. This result
is easy to interpret, since there is a lot of information about
what processes each brain area may be involved in. The
coordinates are comparable across studies, and thus result
reproduciblity is also an expectation.

In recent years, there has been increasing awareness of
the fact that there is information in the entire pattern of
brain activation and not just in saliently active locations.
Classifiers have been the tool of choice for capturing this
information and used to make predictions ranging from what
stimulus a subject is seeing, what kind of object they are
thinking about or what decision they will make [11] [13] [7].
Such classifiers are usually trained on a selection of voxels
from the 3D grid that makes up the activation pattern; often
this means the best accuracy is obtained using few voxels,



from all across the brain, and that different voxels will be
chosen in different cross-validation folds. Domain experts
will generally raise two types of concern in face of this. The
first is that the classifiers can be hard to interpret, e.g. does
weight placed in a voxel in one area mean that that area is
used? The second is the lack of reproducibility in face of
the choice of different voxels in different folds. Even though
there might be redundant information which would explain
this, the results can still be perceived as dubious.

One approach to this problem is to try and regularize
classifiers so that they include as many informative voxels
as possible [1], thus identifying localizable clusters of voxels
that may overlap across folds. A different approach is to
cross-validate classifiers over small sections of the grid cov-
ering the brain, known as searchlights [10] [14]. This can be
used to produce a map of the accuracy in the searchlight
around each voxel, taking advantage of the pattern of acti-
vation across all the voxels contained in it. Such a map can
then be thresholded to leave only locations where accuracy
is significantly above chance.

A different issue that affects both of these approaches
stems from the increasing commonality of datasets with tens
to hundreds of tasks or stimuli. Knowing the location of a
voxel does not suffice to interpret what it is doing, as it could
be very different from stimulus to stimulus (rather than just
active or not, as in the two task situation). It’s also possible
for neighbouring voxels to be doing different things relatex
to the same task, thus barring any attempt to cluster them
by their time series. Few brain locations will differentiate
between all possible stimuli, say, at the spatial resolution
of fMRI, and hence defining a searchlight size or shape is a
trade-off between including voxels and making it harder to
learn a classifier and excluding voxels and thus the number
of distinctions that can be made.

Our goal is to attempt to address all of these issues by
building a classifier that works in terms of the presence or ab-
sence of patterns of activation across certain regions, rather
than the level of activation in individual voxels. The proce-
dure we will describe involves building searchlights of various
sizes and shapes in a data-driven manner, and learning pat-
tern detectors operating over those searchlights. The out-
puts of these can then be used as the inputs to the classifier.

2. DATA AND METHODS

2.1 Data
As we described earlier, the grid covering the brain con-

tains on the order of tens of thousands voxels, measured over
time as tasks are performed, every 1-2 seconds, yielding hun-
dreds to thousands of 3D images per experiment. During an
experiment a given task is performed a certain number of
times – trials – and often the images collected during one
trial are collapsed or averaged together, giving us one 3D
image that can be clearly labelled with what happened in
that trial, e.g. what stimulus was being seen or what de-
cision a subject made. Although the grid covers the entire
head, only a fraction of its voxels contain cortex in a typical
subject; hence we only consider these voxels as features.

A searchlight is a small section of the 3D grid [10], in our
case a 27 = 3×3×3 voxel cube. Analyses using searchlights
generally entail computing a statistic [10] or cross-validating
a classifier over the dataset containing just those voxels [14],
and do so for the searchlights centered around each voxel in

the brain. The intuition for this is that individual voxels are
very noisy features, and an effect observed across a group of
voxels is more trustworthy.

In the experiment performed to obtain our dataset 1 [12],
subjects observed a word and a line drawing of an item, dis-
played on a screen for 3 seconds and followed by 8 seconds
of a blank screen. The items named/depicted belonged to
one of 12 categories: animals, body parts, buildings, build-
ing parts, clothing, furniture, insects, kitchen, man-made
objects, tools, vegetables and vehicles. The task was to
think about the item and its properties while it was dis-
played. There were 5 different exemplars of each of the 12
categories and 6 experimental epochs. In each epoch all
60 exemplars were shown in random order without repeti-
tion, and all epochs had the same exemplars. During an
experiment the task repeated a total of 360 times, and a
3D image of the fMRI-measured brain activation acquired
every second. Each example for classification purposes was
the average image during a 4 second span while the subject
was thinking about the item shown a few seconds earlier
(a period which contains the peak of the signal during the
trial); the dataset thus contains 360 examples, as many as
trial tasks. The voxel size was 3× 3× 5 mm, with the num-
ber of voxels being between 20000 and 21000 depending on
which of the 9 subjects is considered.

2.2 Algorithm
This section describes the entire procedure that takes place

given a training set and test set, which would appear in the
context of cross-validation. In our experiments this is per-
formed by using even or odd epochs as the two folds, with
180 examples in each. We do this – rather than a leave-one-
epoch-out, for instance – because we are interested in esti-
mating the reproducibility of models learned on two datasets
from the same subject, and using training sets with overlap-
ping examples would give an inflated estimate of this. The
procedure has two parts, described separately for clarity.

2.2.1 Identifying informative voxel sets

The first goal is to identify different kinds of information
present throughout the brain. Ultimately, we would like to
understand how a certain semantic category is represented
throughout the brain (e.g. do “Insects” and “Animals” share
part of their representation because both kinds of things are
alive?). Intuitively, there is information in a given location
if at least two categories can be distinguished looking at
their respective patterns of activation there (or otherwise the
pattern of activation is noise or common to all categories).
A natural starting point is to consider whether each pair of
categories can be distinguished in each of the thousands of
searchlights covering the brain, and to do this for all pairs.

The second goal is to assemble as large a region as pos-
sible containing one kind of information. Examining each
small searchlight makes sense if we consider that, a priori,
we don’t know where the information is or how big a pattern
of activation would have to be considered (with some excep-
tions, notably areas that respond to faces, houses or body
parts see [8] for a review). That said, if the same categories
are distinguishable in two adjacent searchlights (which over-
lap) then it is reasonable to assume that all their voxels put
together would still be able to make the same distinctions.

1The data were kindly shared with us by Tom Mitchell and
Marcel Just, from Carnegie Mellon University.
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Figure 1: Identifying informative voxel sets

Doing this repeatedly allows us to find a kind of natural
searchlight, not bound by shape or size assumptions, which
we call an informative voxel set.

Figure 1 depicts the steps in the procedure to identify
informative voxel sets. Within a training set, and for each
pairwise classification task (e.g. animals-vs-insects, tools-
vs-buildings, etc):

1. Cross-validate a classifier in the searchlight centered
around each voxel and obtain an accuracy value.

2. Assign that value to the voxel at the center of the
searchlight, yielding an accuracy brain image.

3. Transform the accuracy brain image into a p-value
brain image (of obtaining accuracy as high or higher
under the null hypothesis that the classes are not dis-
tinguishable, see Section 2.2.4 for details). Threshold
this at 0.01 (uncorrected) to get a binary brain image
with candidate locations for whether this class distinc-
tion can be made.

After these steps we have as many binary images as there
are pairs of classes (66 pairs total). These can also be seen as
a new dataset, with #pairs examples and #voxels features,
where each voxel has a #pairs information vector summa-
rizing what distinctions can be made inside its searchlight.
We can now use agglomerative clustering of adjacent voxels
with similar information vectors to build informative voxel
sets (step 4 in Figure 1, see Section 2.2.4 for details of the
clustering algorithm). The final result is an assignment of
each voxel to a cluster, and an information vectors for each
cluster. Note that there are typically only a few tens of
clusters with 2 or more voxels.

We do not correct for multiple comparisons at the binary
brain image stage because we want to retain as many rea-
sonable, low p-value candidate voxels as possible. In our ex-
perience noise voxels that have low p-values don’t have too
many neighbours with low p-values as well, so they should
be eliminated during the clustering stage.

2.2.2 Constructing pattern features for classification

The goal of the second part of the procedure is use the
informative voxel sets to create features that correspond to
indicators of a certain pattern being present in each set, and
convert train and test examples into this new feature space.
Given the informative sets identified in the training data in
the first part, Figure 2 shows the steps taken:

1. For each informative set, train as many classifiers as
there are class distinctions in the corresponding infor-
mation vector (the classifier is trained on all the voxels
in the informative set). Any classifier will do, as long
as it can be trained to output the probability of one of
the two classes given an example.

2. For each informative set, apply the classifiers learned
to the voxels in the set across all examples of the train-
ing data. The output of a classifier over all the exam-
ples becomes a new pattern feature, taking values in
the [0, 1] range; extreme values mean that the clas-
sifier detects the pattern corresponding to one of the
two classes. Each set gives rise to as many pattern fea-
tures are there distinctions in its information vector.
Note that each classifier will be applied to examples of
classes other than the two used to train it; this is de-
liberate, as the classifier is being used solely as pattern
detector.

3. The same feature construction process is done for the
test set, applying the classifiers learned on the training
set.

2.2.3 Learn a classifier over pattern features

After the construction of training and test pattern feature
datasets, a classifier can be trained and tested, as shown in
step 4 in Figure 2. There is no need to use the same kind
of classifier as that used for pattern feature construction; in
our case, we need only a classifier that is interpretable in the
sense that we can ascertain the sensitivity of its predictions
to each of the features.

2.2.4 Further Details

Classifiers on searchlights.
The classifier cross-validated in each searchlight, for each

pair of classes, was LDA (Linear Discriminant Analys, [5])
with a shrinkage estimator of the covariance matrix that sets
the shrinkage parameter automatically [16]. We used it be-
cause it could capture the covariance structure of the voxels
inside a searchlight, given there were at most 27 voxels in
it. The cross-validation was done inside the training set (3
epochs, containing 180 examples belonging to 12 classes),
leaving one epoch out. There were thus 10 examples of each
class for each pairwise discrimination. The resulting accu-
racy for each pairwise discrimination was converted into a p-
value, by computing the probability of classifying that many
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Figure 2: Constructing pattern features

or more examples correctly if the classifier were performing
at chance level. Under the null hypothesis the number of
correctly labelled examples has a binomial distribution with
p = 0.5 and n = #examples. For more details see [15].

Clustering of information vectors.
At the start of the agglomerative clustering process, each

voxel is a cluster by itself and has an associated binary infor-
mation vector with 66 entries corresponding to which pairs
of classes can be distinguished in its surrounding searchlight.
For each voxel we compute the similarity of its information
vector with those of all its neighbours, which takes a few
tens of seconds.

The similarity measure between two vectors vi and vj

is obtained by computing the number of 1-entries present
in both vectors,

P

pairs
AND(vi,vj), the number of 1-entries

present in only one of them,
P

pairs
XOR(vi,vj) and then the

measure

similarity(vi,vj) =

P

pairs
AND(vi,vj) −

P

pairs XOR(vi,vj)

2
P

pairs
AND(vi,vj)

The measure was chosen with several properties in mind.
The first is that it peaks at 1 if the two vectors match exactly,
and decreases – possibly into negative values – if there are
mismatches; it will tolerate more mismatches if there are
more distinctions being made. The second is that it will
cluster sparse vectors as readily as dense vectors, as long
as there are vew few mismatches. The number of entries
present in only one is divided by 2 so that the differences do
not get twice the weight of the similarities.

We then iterate the following steps:

1. find the two adjacent clusters (voxels, in the first iter-
ation) whose information vectors are the most similar

2. merge the clusters, obtaining a new information vec-
tor that will represent the cluster (this is obtained by
computing a soft-AND function of the initial informa-
tion vectors of all voxels in both clusters, which makes
an entry 1 if 90% of voxels have it)

3. update the similarity between that cluster and all its
neigbours (a very small fraction of the number of sim-
ilarities computed during initialization)

stopping when similarity drops below very conservative
threshold for the measure (0.9, ensures that only voxels with
almost identical profiles get merged). The soft-AND ap-
pears to produce reasonable results for the amount of noise
present, in that it is robust to small differences (e.g. if a
single voxel in a large cluster has 0 entry in which all others
have a 1, then the cluster prototype should still have a 1
there, and vice versa). This runs in a few minutes for all our
subjects.

Generation of pattern features from informative sets.
After clustering stops there are typically several thou-

sand clusters left, given the high similarity threshold we use,
hence we have to select which ones will give rise to pattern
features. For each cluster, we know the number of voxels in
it and also its information vector, which is an indication of
how many class pairs can be distinguished there. Regardless
of size, we use clusters that support at least 6 distinctions
( 1
2

of the number of classes), as we are interested in clusters
that encode semantic representations and thus are likely to
have patterns shared across several classes.

This is the main parameter of the algorithm. It could
be set to a value we know we want a priori or be chosen



by cross-validation inside the training set if accuracy is the
main goal. We report the results for various settings to
examine the sensitivity of results – both qualitatively and
quantitatively – to this setting.

For each cluster selected we then train as many classifiers
as there are distinctions in its information vector, and use
their output when applied to train and test data to produce
pattern features, as described earlier. We use a linear SVM
(LIBSVM [2], λ = 1) for this purpose.

Classifier on pattern features.
The final step in the procedure is to train a classifier on

the pattern features produced from the training set. This
classifier can be chosen so as to produce a model relating
pattern features to class labels in a manner is intuitive to
a domain expert. One example might be a decision tree
where the first decision would depend on the presence of a
certain pattern in a particular voxel cluster. Presence would
indicate the subject was thinking of a living thing, whereas
a different pattern would be present for inanimate objects.
Expanding further would essentially provide a representa-
tion for examples of a particular category composed of the
presence and absence of a combination of patterns. For our
experiments we use a linear SVM (LIBSVM [2], λ=1), as our
primary interest is determining how the method performs as
gauged by a number of quantitative measures.

3. EXPERIMENTS

3.1 Baseline
We will contrast experimental results obtained with our

method with a baseline of classification using voxel selec-
tion. The scoring criterion for each voxel is the accuracy
of a LDA searchlight classifier doing 12 way classification.
The number of voxels to use was selected by nested cross-
validation inside the training set 2. The results are shown
in the first line of Table 1. Whereas the accuracy is above
chance (0.08) for all subjects, it is rather low for some. There
are at least two factors responsible for this. The first is that
some classes give rise to very similar patterns of activation
(e.g. “buildings” and “building parts”), and hence examples
in these classes are confusable (confusion matrices bear this
out). The second factor is that subjects vary in their abil-
ity to stay focused on the task and avoid stray thoughts or
remembering other parts of the experiment, hence examples
may not belong to the class corresponding to the label or
even any class at all. [12] also points out that accuracy is
correlated with a subject’s ability to stay still during the
experiment.

3.2 Results
Table 1 shows the classification accuracy results obtained

with our method, varying the threshold used for determining
which clusters to draw pattern features from. Highlighted
in bold is the threshold we would like to use, since we would
like to have clusters that distinguish at least a few classes
from others, but do not wish to overly restrict the choice to
clusters that distinguish several. The results indicate that
the threshold choice might not make much difference for any
but the subjects where classification performance was worse

2Possible choices were 50, 100, 200, 400, 800, 1200, 1600,
2000, 4000, 8000, 16000 or all voxels.

(P5 and P9, where voxel selection did not improve results
relative to using the whole brain).

The results also show that there is no loss of information
in switching from using voxels to using pattern detectors as
features. Depending on the subject and set of results, there
are generally thousands of voxel clusters being used, each
of which gives rise to as many pattern detector features as
there are class distinctions supported by that cluster. Hence
we typically have many thousands of features and yet the
accuracy is comparable or better than that obtained with
voxel selection; one possible explanation for this is the exis-
tence of many correlated detector features.

Note that classification happens in a 2-fold cross-validation
procedure, and that that the total number of examples is
360. This is the reason why we opted not to include er-
ror bars on classification results or perform paired t-tests
to compare pairs of them. Instead, we performed sign tests
that look at whether our method outperformed the baseline
voxel selection method for each subject, yielding a p-value
< 0.01 at the various thresholds.

The vast majority of the clusters are just single voxels
and their searchlights. Given this, it’s legitimate to ask to
what extent our method suffers from the lack of overlap in
voxels used in the two halves of the dataset that tends to
affect voxel selection. Table 2 shows the overlap, computed

as
#voxels selected in both folds
#voxels selected in either fold

. In the baseline case the

overlap is between selected voxel subsets, for our method
it’s between the voxels that belong to sets used to produce
patern detectors. As expected, overlap decreases as we raise
the threshold for using clusters to produce pattern detectors.
The ranges of numbers of clusters used are given in the last
column of the table, and the lower and upper limits corre-
spond to the worst and best subject in terms of accuracy.
Regardless of threshold choice, our procedure for identifying
informative voxel sets using pairwise classification profiles
seems to also provide more reliable voxel selection (consid-
ering the number of single searchlight clusters). The results
suggest that, for this dataset, most searchlights support at
least 9-12 category distinctions.

Finally, we can examine the locations of the clusters iden-
tified, as the dataset has been annotated with anatomical
labels for each voxel [17]. For the various subjects, the over-
whelming majority of clusters lie in various locations inside
either occipital cortex (the various visual cortices, where vi-
sual representations are assembled, see for instance [9]) or
temporal cortex (e.g. the various temporal gyri, the fusiform
gyrus, the lingual gyrus, and other locations connected with
representations of semantic information [6], [4], [12]).

4. CONCLUSIONS AND FURTHERWORK
We have introduced a method to synthesize features cor-

responding to the presence/absence of certain patterns of
activation across small brain regions, identified in a data-
driven way. Such features appear to preserve or enhance
the information contained in the levels of activation in indi-
vidual voxels. We conclude this from results showing that
they permit classification at a higher accuracy than that ob-
tained with a classifier working over voxels selected using a
competitive method. Moreover, the sets of voxels used are
more reproducible across cross-validation folds than those
identified with voxel selection, and lie in plausible brain lo-
cations.



We are continuing to develop this method, with the next
stage being identifying correlated pattern feature detectors
and use that to further condense small clusters into larger
ones, if possible, or non-contiguous units. The ultimate goal
is to be able to robustly identify the various types of infor-
mation present in a pattern of brain activation, as defined by
the ability to distinguish some subset of the classes from an-
other subset. Given this, it will be feasible to try and related
such distinctions to existing theories about how semantic in-
formation is represented across the brain. A second reason
for doing this is to reduce the number of clusters considered
in the final classifier. The desired outcome is one where the
pattern of brain activation for a given class can be succintly
described in terms of cluster subpatterns being present or
absent, and classes related by which subpatterns they share.
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Table 1: Classification accuracy for the 9 subjects. The p-value of the sign-test for the number of subjects

where our method outperforms voxel selection is < 0.01 for the various thresholds.
P1 P2 P3 P4 P5 P6 P7 P8 P9

baseline (using all voxels) 0.31 0.21 0.19 0.27 0.13 0.09 0.14 0.13 0.15
baseline (voxel selection) 0.53 0.33 0.24 0.34 0.14 0.16 0.21 0.20 0.15
#voxels selected (fold 1) 1200 400 200 1600 800 800 800 400 2000
#voxels selected (fold 2) 800 200 100 800 50 8000 100 1200 100
inclusion threshold 3 0.57 0.34 0.33 0.42 0.16 0.21 0.24 0.16 0.18
inclusion threshold 6 0.57 0.34 0.33 0.42 0.17 0.28 0.23 0.20 0.17

inclusion threshold 9 0.58 0.34 0.33 0.43 0.16 0.31 0.22 0.20 0.19
inclusion threshold 12 0.56 0.36 0.35 0.41 0.17 0.30 0.21 0.16 0.14

Table 2: Cross-fold overlap in voxels used for the 9 subjects.
P1 P2 P3 P4 P5 P6 P7 P8 P9 #clusters used

baseline (voxel selection) 0.24 0.12 0.05 0.08 0.01 0.06 0.02 0.04 0.01 -
inclusion threshold 3 0.29 0.22 0.24 0.35 0.44 0.46 0.45 0.43 0.43 approx. 3000-8500
inclusion threshold 6 0.29 0.22 0.24 0.35 0.17 0.20 0.19 0.17 0.16 approx. 1000-4500
inclusion threshold 9 0.26 0.15 0.19 0.23 0.07 0.13 0.11 0.09 0.06 approx. 250-2500
inclusion threshold 12 0.30 0.15 0.19 0.21 0.05 0.13 0.12 0.05 0.03 approx. 50-1500


