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Abstract

In this paper we carry out an extensive comparison of many off-the-shelf distributed semantic
vectors representations of words, for the purpose of making predictions about behavioural results
or human annotations of data. In doing this comparison we provide a guide to how vector
similarity computations can be used to make such predictions. We also introduce many resources
available, both in terms of datasets and of vector representations. Finally, we discuss the
shortcomings of this approach and future research directions that might address them.

1 Introduction

1.1 Distributed semantic representations

We are interested in one particular aspect of conceptual representation—the meaning of a word
– insofar as it is used in the performance of semantic tasks. The study of concepts in general
has a long and complex history, and we we will not attempt to do it justice here (see Margolis
& Laurence, 1999; G. L. Murphy, 2002). Researchers have approached the problem of modelling
meaning in diverse ways. One approach is to build representations of a concept – a word used
in one specific sense – by hand, using some combination of linguistic, ontological and featural
knowledge. Examples of this approach include WordNet (Miller, Beckwith, Fellbaum, Gross,
& Miller, 1990), Cyc (Lenat, 1995), and semantic feature norms collected by various research
groups (e.g., McRae, Cree, Seidenberg, & McNorgan, 2005; Vinson & Vigliocco, 2008). An al-
ternative approach, known as distributional semantics, starts from the idea that words occurring
in similar linguistic contexts – sentences, paragraphs, documents – are semantically similar (see
Sahlgren, 2008, for a review). A major practical advantage of distributional semantics is that
it enables automatic extraction of semantic representations by analyzing large corpora of text.
Since the computational tasks we are trying to solve (and the more general problem of concept
representation in the brain) require models that are general enough to encompass the entire En-
glish vocabulary as well as arbitrary linguistic combinations, our focus will be on distributional
semantic models. Existing hand-engineered systems cannot yet be used to address all the tasks
that we consider.

Common to many distributional semantic models is the idea that semantic representations
can be conceived as vectors in a metric space, such that proximity in vector space captures a
geometric notion of semantic similarity (Turney & Pantel, 2010). This idea has been important
both for psychological theorizing (Howard, Shankar, & Jagadisan, 2011; Landauer & Dumais,
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1997; Lund & Burgess, 1996a; McNamara, 2011a; Steyvers, Shiffrin, & Nelson, 2004) as well
as for building practical natural language processing systems (Collobert & Weston, 2008; Mnih
& Hinton, 2007; Turian, Ratinov, & Bengio, 2010). However, vector space models are known
to have a number of weaknesses. The psychological structure of similarity appears to disagree
with some aspects of the geometry implied by vector space models, as evidenced by asymmetry
of similarity judgments and violations of the triangle inequality (Griffiths, Steyvers, & Tenen-
baum, 2007; Tversky, 1977). Furthermore, many vector space models do not deal gracefully with
polysemy or word ambiguity (but see Jones, Gruenenfelder, & Recchia, 2011; Turney & Pantel,
2010). Recently, a number of different researchers have started focusing on producing vector rep-
resentations for specific meanings of words (Huang, Socher, Manning, & Ng, 2012; Neelakantan,
Shankar, Passos, & McCallum, 2015; Reisinger & Mooney, 2010; Yao & Van Durme, 2011), but
these are still of limited use without some degree of manual intervention to pick which meanings
to use in generating predictions. We discuss these together with other available approaches in
Section 2.1. In the work reported here, we do not attempt to address these issues directly;
our goal is to compare the effectiveness of different vector representations of words, rather than
comparing them with other kinds of models.

1.2 Modelling human data

Ever since (Landauer & Dumais, 1997) demonstrated that distributed semantic representa-
tions could be used to make predictions about human performance in semantic tasks, numerous
researchers have used measures of (dis)similarity between word vectors – cosine similarity, eu-
clidean distance, correlation – for that purpose. There are now much larger test datasets than
the TOEFL synonym test used in (Landauer & Dumais, 1997), containing hundreds to thou-
sands of judgments on tasks such as word association, analogy, and semantic relatedness and
similarity, as described in Section 2.3. The availability of LSA as a web service1 for calculating
similarity between words or documents has also allowed researchers to use it as a means of
obtaining a kind of “ground truth” for purposes such as generating stimuli (e.g. (Green, Krae-
mer, Fugelsang, Gray, & Dunbar, 2010)). In parallel with all this work, researchers within the
machine learning community have developed many other distributed semantic representations,
mostly used as components of systems carrying out a variety of natural language processing
tasks, ranging from information retrieval to sentiment classification (Wang & Manning, 2012).

Beyond behavioural data, distributed semantic representations have been used in cognitive
neuroscience, in the study of how semantic information is represented in the brain. More specif-
ically, they have been used as components of forward models of brain activation, as measured
with functional magnetic resonance imaging (fMRI), in response to semantic stimuli (e.g. a
picture of an object together with the word naming it, or the word alone). Such models learn a
mapping between the degree to which a dimension in a distributed semantic representation vec-
tor is present and its effect on the overall spatial pattern of brain activation. These models can
be inverted to decode semantic vectors from patterns of brain activation, which allow validation
of the mappings by classifying the mental state in new data; this can be done by comparing the
decoded vectors with “true” vectors extracted from a text corpus.

Reviewing this literature is beyond the scope of this paper, but we will highlight particularly
relevant work. The seminal publication in this area is (Mitchell et al., 2008), which showed
that it was possible to build such forward models, and use them to make predictions about new
imaging data. They represented concepts by semantic vectors where dimensions corresponded
to different verbs; the vector for a particular concept was derived from co-occurrence counts
of the word naming the concept and each of those verbs (e.g. the verb “run” co-occurs more
often with animate beings than inanimate objects). Subsequently, (Just, Cherkassky, Aryal, &
Mitchell, 2010) produced more elaborate vectors from human judgments, with each dimension

1http://lsa.colorado.edu
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corresponding to one of tens of possible semantic features. In both cases, this allowed retro-
spective interpretation of patterns of activation corresponding to each semantic dimension (e.g.
ability to manipulate corresponded to activation in motor cortex). Other groups re-analyzing
the data from (Mitchell et al., 2008) showed that superior decoding performance could be ob-
tained by using distributed semantic representations rather than human postulated features (e.g.
(Pereira, Detre, & Botvinick, 2011) (Liu, Palatucci, & Zhang, 2009)). In particular, (Pereira et
al., 2011) used a topic model of a small corpus of Wikipedia articles to learn a semantic repre-
sentation where each dimension corresponded to an interpretable dimension shared by a number
of related semantic categories. Furthermore, the semantic vectors from brain images for related
concepts exhibited exhibited similarity structure that echoed the similarity structure present
in word association data, and could also be used to generate words pertaining to the mental
contents at the time the images were acquired. A systematic comparison of the effectiveness of
various kinds of distributed semantic representations in decoding can be found in (B. Murphy,
Talukdar, & Mitchell, 2012b). This work has led researchers to consider distributed semantic
representations as a core component of forward models of brain activation in semantic tasks,
or even try to incorporate brain activation in the process of learning a representation (Fyshe,
Talukdar, Murphy, & Mitchell, 2014). The pressing question, from that perspective, is whether
representations contain enough information about the various aspects of meaning that might be
elicited by thinking about a concept. This question was tackled in (Bullinaria & Levy, 2013),
and the authors concluded that the representations currently in use are already very good for
decoding purposes, and that the quality of the fMRI data is the main limit of what can be
achieved with current approaches. As this conclusion was drawn from datasets containing acti-
vation images in response to a few tens of concrete concepts, we believe that we should not look
at fMRI to try to gauge the relative information content of different representations; rather, we
should use behavioural data to the extent possible, over words naming all kinds of concepts that
might be stimuli in experiments. This was the original motivation for this paper.

Our first goal is thus to evaluate how suitable different distributed semantic representa-
tions are for reproducing human performance on behavioural experiments or to predict human
annotations of data from such tasks. We restrict the comparison to available off-the-shelf rep-
resentations, because we believe many researchers cannot, or would rather not, go through the
trouble of producing their own from a corpus of their choice. As we will see later, the size of
the corpus used in producing a representation is a major factor in the quality of the predictions
made, and this makes such production logistically complicated, at the very least (because of
preparation effort, running time, memory required, etc). In the same spirit, we would like to
have our comparison also act as tutorial that shows such predictions can be made and contrasted
across representations.

Our second, related goal, is to determine how appropriate vector similarity is for modelling
such data, as tasks become more varied and complex. To that effect, we carried out compara-
tive experiments across a range of tasks – word association, relatedness and similarity ratings,
synonym and analogy problems – for all the most commonly used off-the-shelf representations.

To do this, we had to assume that the information derived from text corpora suffices to make
behavioural predictions; existing literature, and our own experience, tell us that this is the case.
But is this the same semantic information that would be contained in semantic features elicited
from human subjects, for instance? Does it bear any resemblance to the actual representations
of stimuli created in the brain while semantic tasks are performed? Can we even say that there is
a single representation, or could it be mostly task dependent? Carrying out practical tasks such
as sentiment detection using a distributed semantic representation does not require the answer
to any of these questions, and neither does decoding from fMRI. The collection of feature norms
such as (McRae et al., 2005) has sometimes led to semantic feature representations being viewed
as more “real” or “interpretable” than distributed semantic representations. It is possible to
constrain the problem of estimating a distributed semantic representation so that the resulting
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dimensions look more like semantic features (e.g. values are positive or lie in the [0,1] range, the
semantic vectors are sparse), as shown by (B. Murphy, Talukdar, & Mitchell, 2012a). Another
issue comes from the fact that representations are derived from some for word co-occurrence,
as we shall see later. Co-occurrence of two words in similar contexts does not mean they are
equivalent, even though their semantic vectors might be similar (e.g. “happy” and “sad”, which
would both appear in sentences about emotions or mental states). Hence, some behavioral
predictions may not be feasible at all. The question of what information can be captured by
semantic features but not distributed semantic representations is discussed at great length in
(Riordan & Jones, 2011), where the authors conclude that the amount of information contained
in the latter is underestimated. Given that our objective is to compare the ability to generate
reasonable predictions from off-the-shelf representations, we will sidestep these questions.

1.3 Related work

The most closely related work is (Baroni, Dinu, & Kruszewski, 2014), an extremely thorough
evaluation focusing on many of the same tasks and using many of the same representations,
carried out independently from ours. Whereas their main goal was to compare context-counting
with context-prediction methods for deriving semantic vectors, our focus is more on helping
readers choose from existing representations for use in predictions of behavioural data, as well
as showing them how this can be done in practice. To that effect, we have included additional
datasets of psychological interest and more vector representations in our comparison. We do
recommend that the reader interested in the technical details of the relationships between the
different types of method refer to this paper, and also to (Pennington, Socher, & Manning,
2014), (Goldberg & Levy, 2014) and (Levy & Goldberg, 2014). (Griffiths et al., 2007) compares
LSA distributed semantic representations with those from a different approach where each word
is represented as vector of topic probabilities (within a topic model of a corpus), over word
association, the TOEFL synonym test from (Landauer & Dumais, 1997) and a semantic priming
dataset. This paper is perhaps the most comprehensive in terms of discussing the suitability
of distributed semantic representations for making predictions in psychological tasks, but does
not consider most modern off-the-shelf representations or recently available datasets. Finally,
(Turney & Pantel, 2010) provides a survey of the uses of distributed semantic representations to
carry out tasks requiring semantic information. Both this paper, (Bullinaria & Levy, 2007) and
(Rubin, Kievit-Kylar, Willits, & Jones, 2014) cover crucial aspects of processing of text corpora
that affect the quality of the representations learned.

2 Methods

2.1 Word representations

The vector space representations we consider are word representations, i.e. they assign a vector
to a word which might name one or more concepts (e.g. “bank”). They have been chosen both
because they were public and easily available, and also because they have been used to make
predictions about behavioural data or human-generated annotations, or as the input for other
procedures such as sentiment classification. We have not included some classic methods, such as
HAL (Lund & Burgess, 1996b), COALS (Rohde, Gonnerman, & Plaut, 2006), BEAGLE (Jones,
Kintsch, & Mewhort, 2006) or PMI (Recchia & Jones, 2009), primarily because the semantic
vectors produced are not publicly available (although the software for producing BEAGLE2

and PMI3 models from a given corpus is). These and other methods used specifically to study
human performance in semantic tasks are reviewed in detail in (McNamara, 2011b).

2https://github.com/mike-lawrence/wikiBEAGLE

3http://www.twonewthings.com/lmoss.html
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One observation that is often made is that word representations are inherently flawed, in that
each vector reflects the use of the corresponding word in multiple contexts with possibly different
meaning (see, for instance, Kintsch (2007) for a discussion). It is still possible to use the words in
the light of this as, for instance, the vector similarity measure can be driven primarily by values
in two vectors present due to related meanings. That said, there have been multiple attempts to
solve this problem by producing representations that comprise multiple vectors for each word,
corresponding to the different meanings of the word. e.g. (Neelakantan et al., 2015) provides
vectors and a description of existing approaches, such as (Reisinger & Mooney, 2010),(Yao
& Van Durme, 2011) or (Huang et al., 2012). We have not included these because they would
require tagging each stimulus word in the evaluation tasks we consider with the specific meaning
present, if available, and this would need to be done separately for each representation type. This
is straightforward, though time-consuming, for representations that develop as many vectors as
there are senses for a word in WordNet, say. It becomes more complicated when the number of
senses is discovered from data, in alternation or simultaneously with the process of generating
semantic vectors. In the latter situation, each word-meaning vector must be interpreted in the
light of the other word-meaning vectors that it is most similar to (e.g. “apple#1” might be
most similar to “computer#2”, whereas “apple#2” might be most similar to “orange#1”).

We would like to stress that this is a comparison between the semantic vector representations
produced by each method operating on a particular corpus, with a given pre-processing and
method-specific options. The latter range from the dimensionality of the vectors produced
to how information about words and their contexts in the corpus documents is collected and
transformed. The choices in all of these factors will affect the performance of the representations
in a comparison. Ideally, we would be comparing the representations produced with multiple
methods operating on the same corpus, and optimizing the various factors for each method.
This, however, is a far more demanding endeavour than the current comparison, in terms of
both computational resources and time. As we will see later, the best performing representations
have all been trained in very large corpora, beyond the scope of what is practical with a single
desktop computer. In Section 4 we discuss when it might make sense to learn a representation
from scratch, and provide pointers to useful resources covering pre-processing, design choices
and trade-offs, toolkits to make the process simpler, as well as the most commonly used corpora.

Across methods, a key distinction is often made between local and global context. When
we say that “similar words occur in similar contexts”, this typically means one of two things:
words are semantically similar if they occur nearby in the same sentence (local context) or in
the same document (global context). There are many variations on this distinction that blur
these lines (e.g., contexts that can extend across sentence boundaries, as in N-gram models,
or the document considered is a section or a paragraph of a larger ensemble). The models we
consider are, for the most part, local context methods, although they use local information in
different ways. For more on this distinction, possible variations and impact on the performance
representations, please refer to (Bullinaria & Levy, 2007), (Turney & Pantel, 2010) and (Rubin et
al., 2014). A second distinction that is made is between context-counting and context-prediction
methods. The former consider co-occurrence counts between words – in whatever context – when
producing vectors; the latter use some criterion that reflects the extent to which one can use
one word in a context to predict others (or vice versa). This distinction is discussed at great
length in (Baroni et al., 2014), as well as (Goldberg & Levy, 2014).
Latent Semantic Analysis (LSA) Latent semantic analysis (LSA; Landauer & Dumais,
1997) is a global context method that models co-occurrence of words within a document. The
representation of each word is learned from a #words ×#documents word count matrix, con-
taining the number of times a word appeared in each available document context. This matrix
is then transformed by replacing each count by its log over the entropy of the word across all
contexts. Finally, the matrix undergoes a singular value decomposition; the left singular vectors
are word representations in a low-dimensional space, and the right singular vectors are document
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representations. The original model was trained on a relatively small corpus of approximately
30000 articles from an encyclopedia. Since we could not obtain that model, we use a random
sample of 10% of the articles from Wikipedia (aproximately 300000 articles) to generate vector
representations with same number of dimensions (300).
Multi-task neural network embedding (CW) In the article introducing this method
(Collobert & Weston, 2008) the authors introduce a convolutional neural network architecture
to carry out a series of language processing tasks – e.g. part-of-speech tagging, named entity
tagging, semantic role labeling – from a vector representation of the words in a sentence. The
vector representation was learned using a local context approach, by training a model that
used it to assign higher probability to the right word in the middle of the window than to a
random one, making this an early instance of “predict” model using a window of 5 words in
each direction. The model was trained on a large subset of Wikipedia containing approximately
631 million words, and distributed as 25-, 50-, 100- and 200-dimensional representations. The
vectors were obtained from a third-party web site4.
Hierarchical log-bilinear model (HLBL) This and other related local context methods
were introduced in (Mnih & Hinton, 2007) and further developed in (Mnih & Hinton, 2008).
The commonality between them is learning vector representations for use in a statistical model
for predicting the conditional distribution of a word given a window of 5 preceding ones. The
model was trained on a subset of the Associated Press dataset containing approximately 16
million words. The representations available are 100- and 200-dimensional. The vectors were
obtained from the same site as those in representation CW.
Non-negative sparse embedding (NNSE) This approach was introduced in (B. Murphy et
al., 2012a) and aims at learning a word representation that is sparse (vector values are positive,
and zero for most dimensions) and disjoint (positive vector values tend to be disjoint between
word types such as abstract nouns, verbs and function words). NNSE is a global context model,
in that it models co-occurrence of words within a document (similarly to (Landauer & Dumais,
1997)) but it combines these with word-dependency co-occurrence counts (similarly to (Lund
& Burgess, 1996b)). The counts were normalized by a transformation into positive pointwise
mutual information (positive PMI) scores (Bullinaria & Levy, 2007; Turney & Pantel, 2010).
The process of generating the vectors with the desired properties is similar to that of (Landauer
& Dumais, 1997), albeit with a more complex process of factorization of word-by-score matrices,
which is beyond the scope of this paper. It was learned from a subset of the Clueweb dataset
(approximately 10 million documents and 15 billion words). The representations available are
50-, 300-, 1000- and 2500-dimensional and the vectors are provided by the authors5.
Word2vec (W2VN) The representations in this class are produced with local context meth-
ods, trained on the Google News dataset (approximately 100 billion words) and distributed by
Google6. The continuous bag-of-words model (Mikolov, Sutskever, Chen, Corrado, & Dean,
2013) (a.k.a. CBOW or “negative sampling”) learns to predict a word based on its context
(predict the word in the middle of a context window based on an average of the vector rep-
resentations of the other words in the window. The representation derived with this model
is 300-dimensional. The continuous skipgram model (Mikolov, Chen, Corrado, & Dean, 2013)
learns to predict words in the context window from a word in the middle of it. In the publicly
available distribution produced with the latter method, the vectors distributed do not corre-
spond to individual words, but rather to identifiers for entities from the Freebase ontology for
a particular meaning of each word. Hence, we excluded this variant of the word2vec method
from the comparison. A good explanation of the two methods is provided in (Goldberg & Levy,
2014), and (Levy & Goldberg, 2014) derives a connection between the skipgram approach and
factorization of PMI count matrices.

4metaoptimize.com/projects/wordreprs

5http://www.cs.cmu.edu/~bmurphy/NNSE/

6https://code.google.com/p/word2vec/
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Global Vectors (GV300, GV42B, GV840B) This approach is described in (Pennington et
al., 2014). It is a global context method, in that it models co-occurrence of words across a corpus,
in a manner similar to (Burgess, 1998; Rohde, Gonnerman, & Plaut, 2009), but it operates by
factorizing a transformed version of the term-term co-occurrence matrix. The factorization is
similar to that used in (Landauer & Dumais, 1997) but the transformation is beyond the scope
of this paper; performance asymptotes with co-occurrences windows of 8-10 words. The model
is trained on a combination of Wikipedia 2014 and Gigaword 5 (6 billion tokens) or Common
Crawl (42 billion and 840 billion tokens). All three versions are 300-dimensional and made
available by the authors7.
Context-counting (BDKC) and context-predicting (BDKP) vectors This approach is
described in (Baroni et al., 2014). The vector representations were extracted from a corpus of
2.8 billion tokens, constructed by concatenating ukWAC, the English Wikipedia and the British
National Corpus, using two different methods (“count” and “predict”). Both methods use local
context windows, although in different ways. The “count” models were obtained by decomposing
matrices of word co-occurrence counts within a window of size 5 using SVD, after transforming
word count scores to PMI.. The “predict” models were obtained by using the word2vec software
on the same corpus, using the CBOW approach with a window of size 5. In both cases the
authors used their own toolbox, DISSECT8, to produce the vector representations. For our
comparison we use the best “predict” and “reduced count” representations made available by
the authors9, which are 400- and 500-dimensional, respectively.

2.2 Vector similarity measures

Our underlying hypothesis is that vector similarity in the space used to represent concepts
reflects semantic relatedness. We consider three kinds of measures – euclidean distance, correla-
tion and cosine similarity – and we will use the term “similarity” to mean either high similarity
proper or low distance, depending on the measure used.

The euclidean distance between n-element vectors u and v is

‖u− v‖2 =

√

√

√

√

n
∑

i=1

(ui − vi)2.

The correlation similary between vectors u and v is

correlation(u,v) =

∑n

i=1
(ui − µu)(vi − µv)

σuσv

= u∗v∗

where µu and σu are the mean and standard deviation of vector u, respectively (and analogously
for vector v). If we consider the normalization where each vector is z-scored, i.e. u∗ = u−µu

σu

,
the correlation can be viewed as a product of normalized vectors.

The cosine similarity between vectors u and v is

cosine(u,v) =

∑n

i=1
uivi

‖u‖2‖v‖2
= u′v′.

where ‖u‖2 is the length of vector u (and analogously for vector v). If we consider the normal-
ization where each vector is made length 1, i.e. u′ = u

‖u‖2
, the cosine similarity can be viewed

as a product of normalized vectors.

7http://nlp.stanford.edu/projects/glove

8http://clic.cimec.unitn.it/composes/toolkit

9http://clic.cimec.unitn.it/composes/semantic-vectors.html
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Given that correlation and cosine similarity are, in essence, vector products, operating on
implicitly normalized versions of the original vectors, they are invariant – to a degree – to the
magnitude of the vector entries or the length of the vector. This is not the case for euclidean
distance, and one of our goals is to determine whether this is a relevant factor for the appli-
cations we have in mind. Furthermore, values of euclidean distance between vectors are not
directly comparable across different vector representations. The use of evaluation tasks based
on rankings, where the score is the position of a “correct” answer, is meant to allow a single
approach that works regardless of the similarity measure used.

The use of rank measures allows us to avoid having to directly predict the raw scores obtained
from judgements of annotations. However, it could also mask large differences in the relationship
between scores for different items across different models (e.g. a representation where vectors
for small sets of words are very similar to each other and dissimilar to all else, versus one with
more graded similarity values between the same words). An alternative approach would be to
use a technique such as the Luce choice rule, which can be used to convert both the scores
and the distances/similarities produced from any representation into the same normalized scale.
This approach and potential pitfalls of using vector distance/similarity are discussed in (Jones
et al., 2011) (and, as described earlier, in (Griffiths et al., 2007)).

2.3 Datasets used in evaluation tasks

The data are available online and pointers to the original paper and a brief description are
provided in each section.

2.3.1 Word association

Nelson, McEvoy, and Schreiber (2004) collected free association norms for 5000 words.10 Over
6000 participants were asked to write the first word that came to mind that was meaningfully
related or strongly associated to the presented word. The word association data were then
aggregated into a matrix form, where Sij represents the probability that word j is the first
associate of word i. The dataset is distributed in a reduced dimensionality version containing
400-dimensional vectors for each word, from which we re-assembled the entire association matrix.
Our hypothesis, following the work of Steyvers et al. (2004), is that word association can be
predicted by vector similarity. Prediction accuracy is measured as the proportion of the top 1%
associates for a particular word that are also in the top 1% of words ranked closest in vector
space to that word, averaged over all words. This criterion is different from but related to the
one in (Griffiths et al., 2007), where the authors considered the probability of the first associate
being present when considering the top m words, for varying values of m; hence the results are
not directly comparably for LSA300, and neither would they be on the grounds of our having
used a different corpus (and settings) to learn the representation. We chose our criterion to
allow comparison across representations of multiple dimensionalities, and because the top 1%
of associates contains most of the probability mass for almost all concepts.

2.3.2 Similarity and relatedness judgments

MEN The MEN dataset11 consists of human similarity judgments for 3000 word pairs, ran-
domly selected from words that occur at least 700 times in a large corpus of English text, and
at least 50 times (as tags) in a subset of the ESP game dataset. It was collected and made
public by the University of Trento for testing algorithms implementing semantic similarity and
relatedness measures, and introduced in (Bruni, Tran, & Baroni, 2014). Each pair was randomly

10http://psiexp.ss.uci.edu/research/software.htm

11http://clic.cimec.unitn.it/~elia.bruni/MEN
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matched with a comparison pair, and participants were asked to rate whether the target pair
was more or less related than the comparison pair. Each pair was rated against 50 comparison
pairs, producing a final score on a 50-point scale. Participants were requested to be native
English speakers.
SimLex-999 The SimLex-999 dataset12 was collected to specifically measure similarity, rather
than just relatedness or association, of words (e.g. “coast” and “shore” are similar, whereas
“clothes” and “closet” are not; both pairs are related). It contains a selection of adjective,
verb and noun words pairs, with varying degrees of concreteness. The similarity ratings were
produced by 500 native English speakers, recruited via Amazon Mechanical Turk, on a scale
going from 0 to 6. The methodology and motivation are further described in (Hill, Reichart, &
Korhonen, 2014).
WordSim-353 The WordSimilarity-353 dataset13 was introduced in (Finkelstein et al., 2001).
It contains a set of 353 noun pairs representing various degrees of similarity. 16 near-native
English speaking subjects were instructed to estimate the relatedness of the words in each pair
on a scale from 0 (totally unrelated words) to 10 (very much related or identical words).

2.3.3 Synonyms and analogy problems

TOEFL This dataset was originally described in (Landauer & Dumais, 1997), and consists
of 80 retired items from the synonym portion of the Test of English as a Foreign Language
(TOEFL), produced by the Educational Testing Service . Each item consists of a probe word
and four candidate synonym words; the subject then picks the candidate whose meaning is most
similar to that of the probe. The test items are available upon request from the authors.14

Google analogy This dataset was originally introduced in (Mikolov, Chen, et al., 2013) and
described in more detail in (Mnih & Kavukcuoglu, 2013) . It contains several sets of analogy
problems, of the form “A is to B as C is to ?”. They are divided into semantic problems
(where A and B are semantically related) and syntactic problems (where A and B are in a
grammatical relation). The five semantic analogies come from various topical domains, e.g.
cities and countries, currencies and family; the nine syntactic analogies use adjective-to-adverb
formation, opposites, comparatives, superlatives, tense and pluralization.

3 Experiments and results

3.1 Prediction of behavioural data or human annotations

Each of the evaluation tasks consists of generating a prediction from words or pairs of words,
and their corresponding vectors, which is matched to behavioural or human-annotated data in
a task-dependent way described in the rest of this section. The datasets used are described
in Section 2.3. The vector representations used are those introduced in Section 2.1, Latent
Semantic Analysis (LSA), Multi-task neural network embedding (CW), Hierarchical log-bilinear
model (HLBL), Non-negative sparse embedding (NNSE), Global Vectors for word representation
(GV), Word2vec (W2VS) and context-counting (BDKC) and context-predicting (BDKP); in
each graph, the method abbreviations are followed by a number indicating dimensionality. If
a particular word is not in the vocabulary of a representation, the corresponding fragments of
data are ignored in tests (this happens for a tiny fraction of each representation, if at all). The
results on all tasks are shown in Figure 1, with all performance scores in the range [0, 1] (1 best);
the specific performance measure is task-dependent, as described below. Given that results are
very similar for cosine and correlation vector similarities, we omit the latter.

12http://www.cl.cam.ac.uk/~fh295/simlex.html

13http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353

14http://lsa.colorado.edu
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Figure 1: Performance of predictions generated from various vector representations across all tasks
available, using cosine similarity (left) or euclidean distance (right). The performance measure is
task dependent, but always in the range [0, 1] (1 best). For Google Analogy only cosine results
were obtained, because of computational constraints.

3.1.1 Word association

For each word in the dataset, we rank all others by the similarity of their vectors to its vector.
The score is the overlap between the top 50 associates of the word and the top 50 most similar
vectors. This number was chosen because it is approximately 1% of the total number of words
for which data is available; the exact number depends on which words are in the vocabulary
associated with a particular vector representation. We chose to consider overlap fraction over
the top words, as opposed to a measure like rank correlation, because most of the ranking is of
little interest to us (the vast majority of words are barely used as associates, if at all).

3.1.2 Similarity and relatedness judgments

These tasks rely on similarity and relatedness judgments between pairs of words. All tasks share
the same evaluation procedure:

1. Rank all test word pairs from most to least similar judgement value (“true ranking”)

2. For each test word pair, compute the similarity between their respective vectors, and
produce a second ranking from most to least similar (“predicted ranking”)

3. The prediction “accuracy” is measured by Spearman rank correlation between the true
and predicted rankings positions of all word pairs

The use of Spearman rank correlation allows the results to be comparable across represen-
tations and tasks, irrespective of dimensionality or vector similarity measure.

3.1.3 Synonyms and analogy problems

TOEFL For each of the 80 test items, we calculated the similarity between the vector for
the probe word and the vectors for the four candidate synonyms, picking the most similar. The
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Tasks TOEFL WAS MEN wordsim simlex GAsemantic GAsyntactic

TOEFL – 0.98 0.97 0.96 0.94 0.91 0.90
WAS – – 0.99 0.96 0.96 0.88 0.88
MEN – – – 0.97 0.95 0.87 0.88

wordsim – – – – 0.94 0.84 0.86
simlex – – – – – 0.75 0.76

GAsemantic – – – – – – 0.99
GAsyntactic – – – – – – –

Table 1: Correlation between the scores for all representations in each pair of tasks.

Tasks TOEFL WAS MEN wordsim simlex GAsemantic GAsyntactic

log10 corpus size 0.68 0.75 0.68 0.61 0.66 0.67 0.61
dimensionality 0.42 0.41 0.41 0.46 0.55 0.06 0.03

Table 2: Correlation between representation performance and characteristics (log10 of the corpus
size (row 1), dimensionality (row 2), across all tasks considered.

prediction accuracy is the fraction of test items for which the correct word was selected.

Google analogy The task is carried out by creating a composite of the vectors for the words
in the problem (A−B+C) and then finding the vocabulary word with the most similar vector
(using cosine similarity, excluding the vectors for A, B and C). The prediction accuracy is the
fraction of test items for which the correct word was selected.

3.2 Experiments aggregating results on individual tasks

Given all the experiments described above, are there broad trends across the results? The
first area we considered was the performance of representations across tasks. We quantify the
similarity in performance by computing, for each pair of tasks, the correlation between the scores
for all representations in each of them. These results are shown in Table 1, and suggest that
the relative performance of the models is very similar across all the tasks.

As discussed earlier, we are comparing representations obtained by applying a given method
to a given corpus. Our intent is not to compare the methods in isolation, which would require
applying them to a benchmark corpus and using the resulting representations. It is, however,
still possible to ask whether certain properties of the method or the corpus affect performance in
general, across representations. To that effect, we carried out two separate experiments. In the
first, we correlated the log10 of the corpus size for each representation with the result of using
it in each task. In the second, we did the same for the dimensionality of the representation.
The results are shown in the first and second row of Table 2. Increases in corpus size do appear
to lead to consistently better performance. Our conjecture is that this is to exposure to both
more instances of each context where two words could conceivably co-occur, and also a greater
variation of types of context; these large corpora combine many types of text found on the web
– from blogs to news or transcripts – as well as books and encyclopaedia articles. It is less clear
that increases in dimensionality are advantageous beyond a certain point. NNSE and “count”
vectors do not perform better than other representations with 300 dimensions, and there are
underperforming representations with that dimensionality as well.
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Figure 2: The median R2 across all dimensions for a regression model predicting each representation
(target) from each of the others (source). The R2 is obtained in split-half cross-validation.

3.3 Relation between representations

As seen earlier, the performance of representations is strongly related to the size of the corpus
they were learned from. With that in mind, the best performing representations have comparable
performance across tasks, so the question arises of whether they are, in fact, redundant and
contain similar information. In practice, this would mean that it would be possible to express
each dimension of one representation in terms of the dimensions of another one. We have
implemented a simple version of this approach by training ridge regression models to predict
each dimension in one representation (target) as a linear combination of the dimensions of
another (source). The predictability of the target representation from the source one can then
be summarized as the median R2 across all its dimensions.

The predictions are obtained with an even-odd word split-half cross-validation, in order
to remove the confound of having a better result by having more dimensions in the source
representation. Furthermore, in order to ensure that the vocabularies used are comparable
across representations, and the results pertain primarily to the basic vocabulary used in our
evaluation tasks, we restricted the words considered in two ways. The first is that they come
from a list of 40K lemmas published by (Brysbaert, Warriner, & Kuperman, 2014); around 30K
of these are words or two word compounds that correspond to a lemma in WordNet. Beyond
that, we used the words in common across the vocabularies each source and target representation
(this ranged from 15K for the smallest representations to close to 30K for those with the largest
vocabularies). The results shown in in Figure 2 use λ = 1 in the ridge regression models, but
results are relatively similar for other values of λ a few orders of magnitude above or below.

As expected, median R2 is high within each representation type, and higher when using the
representations with more dimensions to predict those with fewer. NNSE is harder to predict
from other representations, because the positivity and sparsity constraints are not enforced in
our regression model; therefore, results should not be interpreted as meaning that NNSE has
information that other methods cannot predict. Across the representations trained on very large
corpora, the median R2 appears to converge around 0.5. This suggests that there is a residual
inability to predict, and possibly nonlinear relationships between dimensions.
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4 Discussion

In light of the results presented in the previous section, we conclude that there are represen-
tations which perform better across all of our evaluation tasks, namely GloVe and word2vec
(and context-predicting vectors, which uses the same method as word2vec, on a different cor-
pus). Given our reliance on measures of vector similarity to generate predictions in each task,
it appears correlation and cosine similarity are somewhat better than euclidean distance for
this purpose. NNSE at higher dimensionality also performs well across word association and
similarity/relatedness tasks, but less so in analogy tasks. Given that this is the only task that
requires identifying a correct analogy answer out of a range of 10K-100K possibilities, and the
fact that vectors are positive and sparse, it is possible that the vector similarity measures we
use are not the most appropriate to allow fine distinctions between closely related words.

From the practical standpoint of a researcher in need of an off-the-shelf word representation,
we would thus recommend using word2vec (in its context-predicting vector version) or GloVe.
This is because their performance is roughly equivalent and it is straightforward to obtain vectors
in a convenient format (word2vec itself requires extracting them from a binary distribution).
Both options come with a reasonably sized vocabulary; this matters because too large a vo-
cabulary will lead to intense use of memory for no particular gain, as the words of interest in
psychological studies tend to be relatively frequent. Both representations are good for nearest
neighbor computations, and simple vector differences capture the meaning of combinations of
two words (as suggested by the analogy results). GloVe, in addition, has mostly uncorrelated
dimensions. This makes it especially suitable for building other prediction models that work
with vectors as inputs, such as regression models of subject ratings. Both representations have
very dense vectors. If the target application requires some degree of interpretability, e.g. by
identifying which dimensions have the most impact in the prediction, or treating each dimension
as a “magnitude” score, it may make more sense to use a representation like NNSE. The vectors
are sparse and dimensions are positive and shared by a relatively small set of words.

These conclusions are largely consistent with those of (Baroni et al., 2014), who found
that prediction-based, local context methods outperformed co-occurrence count-based methods.
The authors compared both classes of approaches over the same corpus, systematically varying
parameters such as the transformation of the count data or the width of context windows.
Although GloVe was not part of that comparison, we do include both the best performing
count and predict models from that study (BDKC500 and BDKP400) and a variant of GloVe
(GV300) obtained from a corpus of comparable size. From this particular contrast, and given
that BDKP400 was the best model in that study, we believe that word2vec-related models may
have a slight edge in performance relative to GloVe. This is compensated by increasing the GloVe
corpus size; since the large corpus versions are now available off-the-shelf, it’s not clear that there
is any advantage in choosing one over the other. . Interestingly, both CW and HLBL are local
context, prediction-based methods, and perform rather poorly despite being in widespread use.
This suggests that the specific local context prediction method and optimization objective do
matter, as does the size of the corpus used in training. Given the robust correlation between
this and performance of a representation across tasks, it is likely a key factor if considering a
representation for “general purpose” use. Increases in dimensionality do not appear to have
the same effect on performance. Ultimately, all the methods considered use word co-ocurrence
statistics, in what may be a more or less direct fashion. (Pennington et al., 2014) helpfully
provide a perspective that connects their model to others, in particular the skipgram version
of word2vec introduced in (Mnih & Kavukcuoglu, 2013); a detailed explanation of the two
word2vec versions is given in (Goldberg & Levy, 2014).

As mentioned earlier, this is a comparison of off-the-shelf representations, obtained as the
result of applying a specific method to a specific corpus. Even though certain representations are
superior across all the tasks considered, this does not mean that the methods used to produce
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them are necessarily superior. However, the methods that performed best are easily deployable,
with well-documented code that allows tuning of parameters such as the context considered for
co-occurrence. On that count alone, they are likely to be the best options available.

A separate question is that of when would a researcher want to depart from using an off-
the-shelf representation. One situation would be the need for a specialized corpus, from a given
technical (e.g. biomedical texts) or otherwise restricted domain (e.g. educational texts for
particular grades). Across methods, it would still be the case that words appearing in similar
contexts would have similar representations. Given the restricted corpus size, and increased
influence of every word co-occurrence, it would be even more important to define context ap-
propriately (e.g. same document might make sense for information retrieval applications, but
same passage or sentence would likely make more sense for applications where one wants to
represent an individual word). Absent a rationale for picking a specific corpus, the ones most
commonly used are Wikipedia15, ClueWeb1216, Common Crawl17 and Gigaword18 (not freely
available, unlike the others). We would recommend starting with the Wikipedia corpus, as
there are many tools specifically designed to pre-process or subset it, in a variety of program-
ming languages; furthermore, the case may be made that Wikipedia is especially able to provide
contexts covering a “cognitive space” shared by all humans (Olney, Dale, & DMello, 2012).In
this situation, it would be worthwhile to consider using gensim19, as it provides support for
some of the corpus processing required and implementations of not just word2vec but also its
extensions for representing small text passages (Le & Mikolov, 2014); the DISSECT20 toolkit
provides much overlapping functionality, and may be preferrable to operations relying directly
on (transformed) co-occurrence counts (such as SVD or non-negative matrix factorization). The
reader interested in doing this should also consult (Bullinaria & Levy, 2007), (Turney & Pan-
tel, 2010), (Bullinaria & Levy, 2012), and (Rubin et al., 2014) for a discussion of the types of
context, transformations of counts and several other pre-processing steps and factors that can
affect performance of representations.

Overall, the results confirm that vector similarity allows us to make reasonable predictions,
and that certain representations are better for this purpose across all tasks considered. More
specifically, though, results are good for semantic relatedness, less good for controlled semantic
similarity, and even less so for word association. The question is, then, whether this progression
reflects a corresponding psychological process increasingly different from something like a nearest
neighbour operation in semantic space; many other examples of such issues may be found in
(Griffiths et al., 2007; Turney & Pantel, 2010). More recently,(Recchia & Jones, 2009) showed
that the use of an appropriate choice rule, when combined with vector space operations, could
make it possible for such models to overcome at least some of those issues.

Our goal, however, is not to provide a state-of-the-art approach to making each type of
prediction. Our main intention was to see whether certain off-the-shelf representations were
preferrable, across a wide range of tasks and using a simple, robust prediction approach that
yielded results comparable across them. In doing so, we realized this work could also serve as
an introduction to this area, and provide a guide to the publicly available resources used for
our evaluation tasks. We can, however, still consider the question of what can or should be
predicted. For the purposes discussed in the introduction, such as modelling “generic” semantic
activation in brain imaging experiments, these representations provide a clear advantage over
human-generated semantic features (Pereira et al., 2011). Further improvement there will likely
come from moving to concept rather than word vectors and representing sentences or passages
using methods such as paragraph vector (Le & Mikolov, 2014) or skip-thought (Kiros et al.,

15https://dumps.wikimedia.org/enwiki

16http://www.lemurproject.org/clueweb12.php

17https://commoncrawl.org

18http://catalog.ldc.upenn.edu/LDC2003T05

19https://radimrehurek.com/gensim

20http://clic.cimec.unitn.it/composes/toolkit/index.html
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2015). For modelling of human performance in behavioural tasks, or annotations, the picture
is more complicated. First, it is not even clear that there would be a single representation at
work across all tasks. Even if this were the case, it is still possible that task or context of
use would modulate the use (e.g. by attending to different semantic features of stimuli, one
might correspondingly use different dimensions of a semantic space, or a different similarity
function). In the light of this, we hypothesize that further progress will come from modelling
what happens in the process of making a judgment. Semantic vectors can still be at the root
of this, e.g. as inputs to a model that predicts probability of choosing an associate for a probe
word, or which sense of the probe word to use. Other practical issues that are generally ignored
– such as instructions given to subjects changing how they produce a judgment – may still allow
for the use of vector similarity. One possible approach here would be to use metric learning
(Kulis, 2012; Yang & Jin, 2006). More precisely, this would entail weighting each dimension
differently when computing a vector similarity, rather than all dimensions equally, essentially
changing how vector similarity operates. The weights for the metric would be learned on data
from a number of “training” subjects given each of the possible sets of instructions. The learned
metrics could then be used to generate predictions on left-out “test” subjects and, if successful,
their respective dimension weights analyzed to understand which semantic dimensions played a
role in each prediction (and which words, in turn, had loadings in those dimensions).
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