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Abstract
Eye tracking provides insights into social processing deficits in autism spectrum disor-
der (ASD), especially in conjunction with dynamic, naturalistic free-viewing stimuli.
However, the question remains whether gaze characteristics, such as preference for
specific facial features, can be considered a stable individual trait, particularly in those
with ASD. If so, how much data are needed for consistent estimations? To address
these questions, we assessed the stability and robustness of gaze preference for facial
features as incremental amounts of movie data were introduced for analysis. We
trained an artificial neural network to create an object-based segmentation of natural-
istic movie clips (14 s each, 7410 frames total). Thirty-three high-functioning individ-
uals with ASD and 36 age- and IQ-equated typically developing individuals (age
range: 12–30 years) viewed 22 Hollywood movie clips, each depicting a social interac-
tion. As we evaluated combinations of one, three, five, eight, and 11 movie clips, gaze
dwell times on core facial features became increasingly stable at within-subject,
within-group, and between-group levels. Using a number of movie clips deemed suffi-
cient by our analysis, we found that individuals with ASD displayed significantly less
face-centered gaze (centralized on the nose; p < 0.001) but did not significantly differ
from typically developing participants in eye or mouth looking times. Our findings
validate gaze preference for specific facial features as a stable individual trait and
highlight the possibility of misinterpretation with insufficient data. Additionally, we
propose the use of a machine learning approach to stimuli segmentation to quickly
and flexibly prepare dynamic stimuli for analysis.

Lay Summary: Using a data-driven approach to segmenting movie stimuli, we
examined varying amounts of data to assess the stability of social gaze in individ-
uals with autism spectrum disorder (ASD). We found a reduction in social fixa-
tions in participants with ASD, driven by decreased attention to the center of the
face. Our findings further support the validity of gaze preference for face features
as a stable individual trait when sufficient data are used.
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INTRODUCTION

Eye tracking plays an integral role in understanding
social processing deficits in neurodevelopmental disor-
ders, including autism spectrum disorder (ASD). Data
commonly indicate that individuals with ASD do not
process social interactions or facial features the same way
as their typically developing (TD) peers. However, the
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specifics of ASD gaze differences are inconsistent. For
example, some ASD studies report reduced eye region
looking time as compared to TD individuals, while others
report no differences (Freeth et al., 2010; Gillespie-Smith
et al., 2014; Snow et al., 2011; Yi et al., 2013). Some stud-
ies report increased mouth looking time in ASD, and
even suggest increased mouth fixations may compensate
for reduced attention to eye regions (Jones et al., 2008).
On the other hand, other studies report decreased atten-
tion to or no differences in ASD and TD mouth looking
times, regardless of whether stimuli were dynamic or
static, or depicted multiple or single-persons (Johnels
et al., 2014; Speer et al., 2007; van der Geest et al., 2002).

Due to a wide heterogeneity among individuals with
ASD, it is possible that eye tracking differences are a
product of different samplings from this population. Pre-
vious literature points to gaze idiosyncrasies within ASD
samples; studies find significantly more variable gaze
preferences in ASD as compared to typical development
(Avni et al., 2020; Ramot et al., 2020). Group- and
subject-level inconsistencies broach several questions
regarding the meaningfulness of studying gaze in ASD.
Do individuals with ASD view stimuli consistently or do
viewing preferences vary from scene to scene? Do gaze
preferences for specific features of the visual scene
converge as we analyze more data, or do they remain var-
iable? Overall, can researchers consider gaze characteris-
tics (e.g., preference for specific features) a stable
individual trait in those with ASD?

Prior research has addressed the question of viewing
preference stability in TD samples. Findings demonstrate
that while gaze varies greatly between TD individuals, it is
stable within an individual across tasks and even over long
periods of time (Arizpe et al., 2017; Castelhano &
Henderson, 2008; Mehoudar et al., 2014; Peterson &
Eckstein, 2013; Poynter et al., 2013). While ASD studies
show greater group- and subject-level gaze variability (based
on the degree to which subjects deviated from other group
members) compared to TD individuals, the nature of this
variance has yet to be explored (Avni et al., 2020; Ramot
et al., 2020). In particular, there are two main alternatives to
consider. First, gaze preferences in ASD are simply not con-
sistent within an individual. In this case, averaging across
more data will not lead to convergence, as there is no stable
preference. Alternately, it is possible that individual gaze
preferences in ASD are equally stable, but the decreased
consistency is a result of greater noise (i.e., increased vari-
ance around a stable mean). In this case, we would expect to
see convergence around this mean as more data are consid-
ered. Distinguishing between these two alternatives is impor-
tant for understanding the nature of the inconsistencies in
ASD, and the reliability of gaze preference in ASD. The
question of gaze preference stability for specific features of a
scene as a product of data quantity has not previously been
addressed in either TD or ASD populations.

In the present study, we seek to examine the stability of
gaze preferences in TD participants and participants with
ASD, and whether these preferences generalize to different

viewing contexts. We investigate whether viewing prefer-
ences for specific facial features converge in both groups,
and if so, how much data are necessary to consistently esti-
mate group- and subject-level viewing preferences. To this
end, we trained an artificial neural network (ANN) to seg-
ment naturalistic dynamic stimuli of 22 movie clips; this
algorithm allows for the expeditious segmentation of large
amounts of stimuli. Utilizing this approach in a free-viewing
eye tracking paradigm, we investigated the stability and
robustness of within-subject, within-group, and between-
group analyses when incrementally increasing the amount
of data used in the analysis. First, we examine each partici-
pant’s viewing of single movie clips and assess the consis-
tency of looking time at core facial features (eyes, nose, and
mouth). We repeat these analyses while averaging looking
time behavior over increasing numbers of movie clips
(three, five, eight, and 11) to examine how much data are
needed to observe within-group stability and consistent
between-group differences. If indeed fixation preferences for
the different facial features are a stable individual trait in
ASD, then both within-group and between-group results
should become increasingly consistent and robust as we
introduce more data. Subsequently, we apply the previous
analysis’ findings in the context of examining how individ-
uals with ASD view elements of social interactions relative
to TD peers, based on a quantity of movie data shown to
be sufficient for observing consistent differences.

METHODS

Participants

Fifty high-functioning males with ASD and 36 TD male
participants were recruited for this study at the National
Institute of Mental Health between May 2017 and
January 2019. (ClinicalTrials.gov: NCT01031407). The
NIH Combined Neuroscience Review Board granted
ethics approval for this study under protocol 2010-M-
0027. Prior to study inclusion, a trained research clinician
administered the Autism Diagnostic Observation Scale
2 (ADOS)—Module 4 to participants with ASD. Trained
research assistants administered the Wechsler Abbrevi-
ated Scale of Intelligence - II (WASI-II) to participants.
One participant with ASD was administered the
Wechsler Adult Intelligence Scale (WAIS). We obtained
one participant with ASD’s scores on the Wechsler Intel-
ligence Scale for Children-V (WISC-V) from a collabora-
tion with the Children’s National Health System Center
for Autism Spectrum Disorder.

All participants with ASD met the cutoff for the cate-
gory designated as “broad autism spectrum disorders”
according to the criteria established by the National Insti-
tute of Child Health and Human Development/National
Institute on Deafness and Other Communication Disor-
ders Collaborative Programs for Excellence in Autism
(Lainhart et al., 2006). The methods were performed in
accordance with relevant guidelines and regulations and
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approved by the NIH Combined Neuroscience Review
Board. All adult participants provided written consent,
and we obtained written parental assent for minor partici-
pants. Seventeen participants with ASD were omitted
from this analysis due to incomplete testing data (n = 5),
poor quality eye tracking data (defined as missing data on
more than 10% of time points, n = 4), did not meet autism
diagnosis (n = 3), scheduling conflicts (n = 2), did not
meet IQ cut off (Full Scale IQ > 70; n = 1), conflicting
medical conditions (n = 1), and loss to follow up (n = 1).
TD participants were selected to create an age- and IQ-
equated match for each participant with ASD. TD partici-
pants and participants with ASD did not differ on age, IQ,
race, or ethnicity (Table 1). Age at evaluation was
20.74 � 4.0 years and IQ at evaluation was
108.23 � 13.11 (Table 1). Table 1 displays descriptive sta-
tistics on ADOS scores for the ASD sample.

Procedure

Participants’ heads were stabilized using a forehead and
chin rest, and eye gaze calibrations were performed on
the right eye at the beginning of the experiment. Calibra-
tions were all within 0.3� at study onset, and were verified
halfway through the study to ensure that the right eye
was still correctly aligned and had not shifted. There were
no differences between groups in calibration accuracy.
Participants engaged in an 8-min free-viewing paradigm.
There were no explicit instructions other than to watch

the presented movies. They viewed 24 movie clips (14 s in
duration) depicting social interactions in which two or
more characters engage in conversation. Movie clips con-
sisted of the following Hollywood movies: The Blind Side
(six clips), The Goonies (four clips), How To Lose a Guy
in Ten Days (four clips), The Italian Job (five clips), and
The NeverEnding Story (five clips). Movies were viewed
full screen on a digital monitor with a 1920 � 1080 reso-
lution with a screen size of 20.5 � 12 in. Gaze was
recorded by the Eyelink 1000 Plus, sampled at 1000 Hz.
A gray screen appeared for 6 s between presentations of
the clips. A fixation cross appeared in the center of the
gray screen to reset fixations to the center before pre-
senting the successive clip.

For our analyses, we excluded two movie clips from
The NeverEnding Story for displaying a highly dispro-
portionate ratio of face-to-background pixels or scene
darkness that altered segmentations. Final analyses
included 22 movies (7410 frames).

Image segmentation

We trained an ANN to predict segmentations of each
pixel for each frame for each movie. We used the Pascal-
Parts dataset to train a Bayesian SegNet with concrete
dropout to make a predicted segmentation for a given
movie frame (Everingham et al., 2010; Gal et al., 2017;
Kendall et al., 2015). When applying the ANN to new
movie frames, 10 concrete dropout Monte-Carlo samples

TABLE 1 Demographics chart

ASD (n = 33) TD (n = 36) Total (n = 69)

Age, mean (SD) 20.25 (4.02) 20.83 (3.82) 20.74 (4.0)

Race, n (%)

White 21 (63.6) 20 (55.5) 41 (59.4)

Black 2 (6.1) 6 (16.7) 8 (11.6)

Asian 1 (3.0) 3 (8.3) 4 (5.8)

Biracial 3 (9.1) 4 (11.1) 7 (10.15)

Other 1 (3.0) 1 (2.8) 2 (2.9)

Unknown 5 (15.2) 2 (5.6) 7 (10.15)

Ethnicity, n (%)

Hispanic/latino 6 (18.2) 5 (13.9) 11 (15.9)

Not hispanic/latino 22 (66.7) 30 (83.3) 52 (75.4)

Unknown 5 (15.1) 1 (2.8) 6 (8.7)

IQ, mean (SD) 107.81 (13.75) 108.82 (12.98) 108.23 (13.11)

ADOS, mean (SD)

Communication 4.3 (1.42) - -

Social interaction 7.63 (2.03) - -

Social affect 11.93 (2.72) - -

Imagination/creativity 0.76 (0.77) - -

Stereotyped behavior/restricted interests 2.93 (1.44) - -

Note: There are no statistically significant differences between TD participants and participants with ASD across age, IQ, race, or ethnicity.
Abbreviations: ADOS, adult diagnostic observation schedule; ASD, autism spectrum disorder; TD, typically developing.
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were used to produce predicted segmentation labels and
uncertainty. Figure 1 displays a comparison of segmented
stimuli to the original frame. The code we used is publicly
available at https://github.com/nih-fmrif/MLT_Body_
Part_Segmentation, as is further details about the ANN
(McClure et al., 2020).

The ANN segmented images into 11 body part labels:
hair, head, ear, eye, eyebrow, leg, arm, mouth, neck, nose,
and torso. Additionally, we created a 12th category for
each pixel that the ANN did not place into one of these
11 labels. This label was treated as the background label
and contained all other frame features such as objects,
landscapes, and noise that were not associated with the
11 other labels. The performance of the ANN was tested
on the test set portion of the Pascal-Parts dataset by calcu-
lating a Dice score, 2TP

2TPþFPþFN for each label; this statistic
is used to evaluate the similarity between two datasets. In
this measure, a true positive (TP) is a correctly labeled
pixel of that class, a true negative is a correctly labeled
pixel not belonging to that class, and false positive
(FP) and false negative (FN) are the two possible mis-
labelings. Average Dice score for eye = 0.62, nose = 0.57,
mouth = 0.62, body part labels = 0.55, and back-
ground = 0.95 (McClure et al., 2020).

Eye tracking processing

Eye tracking data were extracted for each separate movie
clip, removing the first and last 500 ms of each clip. Non-
fixation data (e.g., blinks, missing, or offscreen fixations)
were ignored. Data were despiked and sampled down to
the frame rate at which the clips were presented (29.97
frames per second). Each pixel received one of the afore-
mentioned 12 labels based on ANN output. For each par-
ticipant, their gaze location for each frame was classified as
belonging to one of these labels, by examining the algo-
rithm’s label predictions within the 15-pixel radius sur-
rounding the primary fixation point. After which, the most
frequently occurring pixel label was selected with a bias

toward smaller features; for example, if the pixels within a
15-pixel radius from a particular fixation included both
“eye” and “head” labels, that fixation would be labeled as
“eye.” The smallest regions of interest covered by this anal-
ysis, including the 15-pixel radius sphere, covered at least
3� of visual angle. For the purposes of our analysis, we
examine only the core face features (eyes, nose, and
mouth). For comparison of face versus non-face looking
times, we consider all face features together (including
head), versus all labels outside the face.

Saliency maps

We created saliency maps for the background (i.e., all
non-face and non-body pixels) of each frame for each
movie to provide additional information on non-socially
relevant gaze. We generated saliency maps using an
intensity contrast feature (ICF) model (Kummerer, Wal-
lis, Gatys, & Bethge, 2017). This model predicts fixations
in images using low-level information such as intensity
and intensity contrast. It is publicly available at https://
deepgaze.bethgelab.org/.

Each pixel was assigned a saliency value from 0 to
1 based on the ICF algorithm output. These values were
then converted to saliency percentage values by normaliz-
ing the saliency value of each pixel against the saliency
value of all background pixels in all frames for each
movie separately. The saliency percentage value for each
pixel therefore represents its relative saliency compared
to other background pixels in the same movie.

Data analysis

For the purposes of this analysis, we examined social
attention to the core facial features including eyes, nose,
and mouth. This analysis investigated the effects of
varying amounts of movie data on the consistency of
individual looking time to these core features as well as

F I GURE 1 Artificial neural network (ANN) identified and segmented each frame of the dynamic stimuli. Examples comparing two original
movie frames to the segmented image in black and white. Different shades of white/gray represent our varying labels generated by the ANN. Black
segments represent no labels given by the ANN, which in our analysis was then labeled as background
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between-group differences. As a basis for evaluating
consistency of looking time across movie clips with
varying content, we normalized the gaze data for each
movie clip. For each participant and each movie clip,
we calculated the proportion of time spent looking at
each individual face label (eyes, nose, and mouth)
divided by total face looking time (time spent fixating
on eyes, nose, and mouth labels together). For each
participant, movie clip, and facial feature, we then cal-
culated the distance from the average looking time of
all other participants in their respective groups. This
was normalized by total time spent looking at the face,
as described above. This normalization serves to
account for differences in raw looking time on the dif-
ferent facial features; these differences may arise from
movie-specific variability (e.g., number of feature pixels
per frames, action, or speech content) and draw atten-
tion to or from the different features. The resulting
values for each participant (henceforth referred to as
looking time proportion) represent the proportion of
looking time they allocate to each of the facial features
out of the time they spend looking at the face in general
for that particular movie clip, compared to all other
participants in their group. These values were then used
to evaluate the internal consistency of looking time on
each of the facial features across movie clips. This was
done by correlating the looking time proportion for
participants across different movie pairs/movie sets, for
all possible combination of single movie pairs, and for
10,000 randomly selected movie sets of three, five,
eight, and 11 movies.

Statistical analysis

To evaluate differences in the distributions between pro-
portion of time spent looking at core features, we per-
formed permutation-based statistical tests using movie
sets consisting of one, three, five, eight, and 11 different
movie clips; these analyses were repeated for each face
label (eyes, nose, and mouth). To test whether the ASD
and TD correlation coefficient distributions significantly
differ from each other, we first calculated the TD group’s
median looking time proportion subtracted by the ASD
group’s median looking time proportion (henceforth
known as real median differences), as well as the TD
looking time proportion variance subtracted by ASD
looking time proportion variance (henceforth known as
real variance differences). We then generated two sets of
10,000 randomly selected looking time proportions from
combined ASD and TD eye tracking data, by randomly
permuting the TD and ASD labels. From this permuted
dataset, we calculated the first dataset’s median looking
time proportion subtracted by the second dataset’s
median looking time proportion (henceforth known as
permuted median differences), as well as the first
dataset’s looking time proportion variance subtracted by

the second dataset’s looking time proportion variance
(henceforth known as permuted variance differences).
This process was repeated 10,000 times. For each itera-
tion of permuted differences, we calculated the propor-
tion of permuted median differences greater than real
median differences, as well as the proportion of permuted
variance differences greater than real variance
differences. This resulting number represents a two-tailed
p-value.

For analysis of within-group looking time stability,
we randomly selected two sets of three non-overlapping
movie combinations, totaling 42 s of stimuli. Similar to
the aforementioned analysis, we calculated the correla-
tions of the within-group internal consistency of the
looking time proportions across these two sets of movies;
this was done for TD participants and participants with
ASD separately. This process was repeated for 10,000
permutations, with different sets of three movies selected
for each permutation; to assess incremental additions of
data, the process was repeated with two sets of movies
with random combinations of five (70 s), eight (112 s),
and 11 (154 s) movies. Then, we sought to evaluate if
these correlation coefficient distributions for each varying
level of movie data (three, five, eight, and 11 movies) sig-
nificantly differ from each other. Differences between
each of the movie data distributions refers to the follow-
ing comparisons: three versus five movies, three versus
eight movies, three versus 11 movies, five versus eight
movies, five versus 11 movies, and eight versus 11 movies.
For each of these pairwise combinations, we calculated
the real median differences between the first movie level
and the second movie level, as well as the real variance
differences between the first movie level and the second
movie level. We then generated two sets of 10,000 ran-
domly selected looking time proportions from combined
movie level eye tracking data. From this permuted
dataset, we calculated the permuted median differences
between the first dataset and the second dataset, as well
as the permuted variance differences between the first
dataset and the second dataset. As before, this process
was repeated 10,000 times as we calculated the propor-
tion of permuted median differences greater than real
median differences, as well as the proportion of permuted
variance differences greater than real variance differ-
ences. This resulting number represents a two-tailed
p-value.

For analysis of between-group looking time stabil-
ity, we randomly selected two sets of non-overlapping
movie combinations; this was done on sets of three,
five, eight, and 11 movies as described above. For
10,000 permutations of these randomly selected sets, we
calculated the correlations of the within-group internal
consistency of the looking time proportions across these
two sets of movies; this was done for TD participants
and participants with ASD separately. Then, we sought
to evaluate if these ASD and TD correlation coefficient
distributions significantly differ from each other across
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akin levels of movie data. First, we calculated the real
median differences between TD and ASD data, as well
as the real variance differences between TD and ASD
data. As before, we generated two sets of 10,000 ran-
domly selected looking time proportions from com-
bined movie level eye tracking data. From this
permuted dataset, we calculated the permuted median
differences between TD and ASD data, as well as the
permuted variance differences between TD and ASD
data. As before, this process was repeated 10,000 times
as we calculated the proportion of permuted median
differences greater than real median differences, as well
as the proportion of permuted variance differences
greater than real variance differences. This resulting
number represents a two-tailed p-value.

RESULTS

Internal consistency of looking time

First, we sought to analyze the consistency of each partic-
ipant’s looking time at different facial features across
22 movies. As outlined in the methods, the ANN
assigned labels with a bias toward smaller features; for
example, if a particular fixation included both “eye” and
“head” labels, that fixation would be labeled as “eye.”
For the purposes of this analysis, we focused on core
facial features (eyes, nose, and mouth). We analyzed indi-
vidual variation in looking times by calculating the
looking time proportion per participant, movie clip, and
facial feature, compared to all other participants in their
group (see Methods). We then compared these individual
looking time proportions across all possible movie pairs
(e.g., Movie 1 and Movie 2; Movie 1 and Movie 3). The
scatterplots in Figure 2(a)–(c) each display an example of
how well-correlated the participants are to themselves
across two example movies; the correlation coefficient
measures within-subject internal consistency across all
participants in each group for that particular movie pair.
The correlation coefficients for all possible movie pairs
are then combined to create the histograms featured in
Figure 2(a)–(c). These histograms showcase the individ-
ual variability of correlations between all single
movie pairs for eye (TDmedian correlation = 0.63,
ASDmedian correlation = 0.45), mouth (TDmedian correlation

= 0.59, ASDmedian correlation = 0.46), and nose
(TDmedian correlation = 0.42, ASDmedian correlation = 0.28)
looking times for each group separately.

We then carried out a permutation test to assess
whether the distributions of these correlation coefficients
significantly differ between the TD and ASD groups (see
Methods). Compared to TD counterparts, those with
ASD showed significantly reduced within-subject internal
consistency in facial feature viewing preferences across
movie clips (p < 0.001), as well as significantly increased
variability (p < 0.001) for eye, nose, and mouth labels.

This is in line with previous literature, which has empha-
sized inter-subject variations among individuals with
ASD (Hahamy et al., 2015; Hasson et al., 2009; Ramot
et al., 2020). We found a similar result by analyzing the
variance of overall looking time for the different facial
features.

Stability of within-group looking time

We next investigated the consistency of within-group
looking time across movies when incrementally increas-
ing the amount of movie data used. This analysis served
two purposes. First, it addressed whether adding more
data improves the consistency of individual looking time
proportions to the different features. Second, it exam-
ined whether both subject groups displayed convergence
of individual preferences for the different facial features;
if observed, this would justify the treatment of facial fea-
ture viewing preference as a stable trait. We examined
this effect on each of the three individual face labels.
First, from our 22 movie clips, we randomly selected
two sets of three non-overlapping movies combinations,
totaling 42 s of stimuli. Similar to the previous analysis,
we calculated the correlations of the within-group inter-
nal consistency of the looking time proportions across
these two sets of movies; this was done for TD partici-
pants and participants with ASD separately. This pro-
cess was repeated for 10,000 permutations, with
different sets of three movies selected for each permuta-
tion. As before, the histograms in Figure 3 display the
correlation coefficients for all the different permuta-
tions. To assess incremental additions of data, we
repeated this process by creating two sets of movies with
random combinations of five (70 s), eight (112 s), and
11 (154 s) movies. Figure 3(a)–(c) displays the distribu-
tion of correlations as the number of movie clips
increases for eye, mouth, and nose looking time propor-
tions, respectively.

Next, we tested whether there is significantly
increased consistency across looking time when using
more data. Using permutation tests, we examined the dis-
tributions of internal consistency using different numbers
of movies (see Methods). Figure 3 shows the increasing
consistency of correlations across each face label as data
is added, with individual looking time proportions con-
verging to an increasingly stable mean across both the
TD and ASD groups. In both groups, the medians and
the variance of the distributions were significantly differ-
ent for different numbers of movies for each of the face
labels (pmedian < 1 � 10�4; pvariance < 1 � 10�4 for all
pairwise comparisons), with the median consistency
increasing and variance decreasing as more movies
were considered. For a given amount of movie data (i.e.,
three movies, five movies, etc.), there were also signifi-
cant differences in the distributions across groups.
Those with ASD were significantly less consistent
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F I GURE 2 ((a)–(c)) Individual consistency of fixations of TD and ASD participants to the different facial features across 22 movies. The
scatterplots display an example of how well-correlated participants are to themselves across two example movies for each of the face labels (Movie
1 vs. Movie 16); each dot represents the looking time proportion for that feature for a single participant in Movie 1 versus Movie 16, in relation to the
average looking time proportion of everyone else in the group (positive values mean that participant spent more time than average looking at that
feature, whereas negative values represent below-average looking time). The correlation coefficient is a measure of within-subject internal consistency
across all participants in each group for that particular movie pair. The histograms display the individual variability of correlations between all single
movie pairs for eye ((a) TDmedian = 0.63, ASDmedian = 0.45), mouth ((b) TDmedian = 0.59, ASDmedian = 0.46), and nose ((c) TDmedian = 0.42,
ASDmedian = 0.28) fixations for ASD and TD groups separately. ASD, autism spectrum disorder; TD, typically developing
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(pmedian < 1 � 10�4) and more variable
(pvariance < 1 � 10�4) than their TD peers across all data
amount levels.

Stability of between-group results

Thus far, we have demonstrated that increasing amounts
of movie data serves to stabilize individual looking time
proportion variation within each group. With this basis,
we then examined the effect of this increased stability on

the consistency of ASD and TD between-group differ-
ences in facial feature preference. First, we examine the
variability in between-group differences when using a sin-
gle movie clip. We used two-sample t-tests to examine
between-group differences per face label in each of the
movies. Figure 4 shows the distribution of the p-values of
the t-tests carried out on the individual movies. Results
varied greatly across movies for all three features, but
particularly for the eyes and mouth. Next, we analyzed
the effects of additional movie data on between-group
looking time differences. We randomly selected three

F I GURE 3 ((a)–(c)) Change in the consistency of within-group fixations across movies when introducing additional movie data for TD (left
panel) and ASD (right panel) participants. Histograms reflect the distribution of correlation coefficients of all permutations as the number of movie
clips increases for eye (a), mouth (b), and nose (c) fixations, respectively (see methods for details). ASD, autism spectrum disorder; TD, typically
developing
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movie clips from our 22 movies and performed a two-
sample t-test on the average looking times on each of the
face labels between the ASD and TD groups in this
movie set. This process was repeated for 10,000 permuta-
tions. Similar to the previous analysis, we examined the
effect of incremental additions of data by repeating this
process with random combinations of five, eight, and
11 movies. Figure 5 features the distribution of p-values
for eye, mouth, and nose looking times as the number of
movie clips increases. As demonstrated in the histograms,
the distributions become increasingly narrower as more
movies are added. For mouth labels, the percentage of
results showing significant differences between ASD and
TD looking time decreases as the number of movies
increases from one (9%) to 11 movies (0.98%). Though
p-values vary widely for between-group differences in eye
looking times, all p-values point to non-significant differ-
ences between the groups when using 11 movies (p > 0.05
for all iterations). For nose labels, we observe an increase
in the percentage of results showing significant differ-
ences between ASD and TD groups as the number of
movies increases from one (53.9%) to 11 (100%) movies.
This is further evidenced by permutation test results com-
paring differences in the effects of additional movie data
on between-group distributions per face label. Findings
reveal significant differences between each of the movie
number distributions on both median and variance
(pmedian < 1 � 10�4; pvariance < 1 � 10�4 for all).

Social interaction movie viewing

The use of 11 movie clips was shown by the previous
analysis to yield consistent and stable results regarding
facial feature looking time, with an average correlation
>0.8 for both groups and across all features. Our results
also clearly showed a convergence as more data were

added. Therefore, we used all 22 movie clips (308 s of
stimuli) to assess looking time differences between TD
participants and those with ASD while they viewed facial
features in naturalistic dynamic interactions. Analysis of
looking time revealed that those with ASD fixated on the
face overall significantly less than TD participants
(t = 3.81; p = 3.08 � 10�4). Figure 6 displays a distribu-
tion of ASD and TD time spent fixating on each individ-
ual face label; for the purposes of this study, we focused
on core facial features (eyes, nose, and mouth). With a
two-by-three analysis of variance, we examined if looking
time was affected by diagnosis (ASD/TD) and individual
core facial feature (eyes/nose/mouth). Main effect ana-
lyses revealed significant differences among face labels
(F [1, 206] = 120.26, p = 4.49 � 10�35) and diagnosis
(F [1, 206] = 5.22, p = 0.02). There was a statistically sig-
nificant interaction between effects of diagnosis and face
label on looking time (F [1, 206] = 4.46, p = 0.01). TD
participants attended more to the nose (t = 3.52;
p = 7.73 � 10�4), however there was no difference
between ASD and TD eye (p = 0.50) and mouth
(p = 0.14) looking time.

Additionally, individuals with ASD allotted more
looking time to the background of social scenes
(t = �3.24; p = 0.001). In order to assess whether this
increased attention to background was driven by saliency
effects, we created saliency maps of each movie back-
ground to examine looking time to low level features. To
this end, we examined the salience attributes of the
attended pixels for each frame in which participants’ eye
position indicated that they were looking at the back-
ground. We calculated the saliency percentage value for
each pixel, such that the value of each pixel represents its
relative saliency compared to other background pixels in
the same movie. We then carried out a group comparison
between TD participants and participants with ASD to
explore differences in low level saliency viewing. TD

F I GURE 4 Distribution of the variability (t-test p-values) between TD individuals and individuals with ASD based on separate evaluation of
each of the 22 movie clips. Results vary greatly across movies for all three features, but particularly for the eyes and mouth. ASD, autism spectrum
disorder; TD, typically developing
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individuals and individuals with ASD did not differ in
saliency of background fixations (p = 0.65). We also cal-
culated within-group variance of saliency of background
fixations (averaged across all frames for all movies) for
TD participants and those with ASD; variance did not
significantly differ between these two groups
(σTD = 0.06; σASD = 0.1163; p = 0.14).

DISCUSSION

Our research investigates the stability of social gaze dur-
ing complex and dynamic interactions in both TD indi-
viduals and those with ASD using a machine learning
approach to eye tracking. Overall, our findings demon-
strate that gaze preference for specific facial features can

F I GURE 5 Consistency of fixations for TD individuals and those with ASD across movies when introducing additional movie data. Histograms
reflect the distribution of t-test p-values of all permutations as the number of movie clips increases for eye, mouth, and nose fixations, respectively (see
methods for details). ASD, autism spectrum disorder; TD, typically developing

F I GURE 6 Distribution of proportion of time spent fixating on eye, mouth, and nose label (out of total face fixation time) for TD individuals
and those with ASD using all 22 movie clips. ASD, autism spectrum disorder; TD, typically developing
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be considered a stable individual trait in both TD and
ASD populations, with individual looking time propor-
tions converging to a stable mean as we add more data.
Based on a number of movie clips shown by our analysis
to yield stable results (22 movie clips), we then sought to
examine social looking time differences between TD indi-
viduals and those with ASD. Our findings reveal that
individuals with ASD attend less to the face in general
than their TD counterparts. Particularly, individuals with
ASD spend less time attending to the center of the face
(the nose region; Figures 5 and 6). However, they do not
significantly differ from TD individuals in eye and mouth
looking time (Figure 5).

Eye tracking paradigms operate under the assumption
that gaze is a stable trait. However, previous literature
casts doubt on this assumption, showing that eye fixa-
tions vary depending on type of stimuli (static
vs. dynamic; Speer et al., 2007). Our results further drive
at this question by revealing poor internal consistency
when few stimuli are used. Although previous studies
show individuals’ gaze consistency in static images, our
stimuli feature rich content from several movies, and may
reveal complexities that arise when using dynamic stimuli
(Arizpe et al., 2017; Mehoudar et al., 2014). As seen by
the relationship between single movie pairings, there is
considerable individual variation from movie to movie
(Figure 2(a)–(c)). Both subject groups display this vari-
ability, though individuals with ASD display greater
instability between individual movies as compared to TD
peers across core face labels (Figure 2(a)–(c)).

Nevertheless, our findings also depict the growing sta-
bility of individual gaze preferences when averaging
across more data, implying a convergence around a sta-
ble mean (Figure 3). Thus, we assert that with sufficient
data, our estimates of looking time proportions can be
considered a stable trait in both ASD and TD groups. It
is important to note that even with the addition of data,
the ASD group again displays greater variance across all
measures, both at the individual and at the group level
(Figure 3(a)–(c)). This is in line with commonly observed
idiosyncrasies within the ASD population (Byrge
et al., 2015; Hahamy et al., 2015; Hasson et al., 2009).
Additionally, this suggests that more data are needed to
consistently estimate individual viewing preferences when
studying participants with ASD.

Insufficient data may be a source for error. When
using only a single short movie clip, findings vary widely
in possible between-group analyses results (Figure 4) and
potentially yield both false-positive and false-negative
significant group differences. We observe increased sta-
bility in the t-test results between groups with additional
data. Using 11 movie clips, the differences in mouth
looking time between TD and ASD participants were
overwhelmingly non-significant, such that 99% of p-
values showed no significant group differences. Alterna-
tively, using single movie clips yielded significant group
differences 9% of the time (Figure 5). Significant

differences between ASD and TD nose looking time were
found for all possible movie set combinations when
examining 11 movies, but failed to reach significance
when examining 46% of the single movies. As expected
based on these results, using all 22 movies, group differ-
ences in nose looking times were significant, but group
differences in eye and mouth looking times were not.

While the stability of the between-group differences
increases across all facial features with the addition of
more data, there are clear differences in the distributions
across labels. Distributions for eye and mouth looking
time differences remain quite broad throughout, span-
ning both significant and insignificant results. Distribu-
tions for nose looking time differences are much
narrower (Figure 5). This likely indicates an interaction
between the internal consistency of the individual data
and the effect size of between-group differences.

As previously mentioned, there is wide and inconsis-
tent debate on the extent to which individuals with ASD
avoid eyes in favor of the mouth (Gillespie-Smith
et al., 2014; Johnels et al., 2014; Jones et al., 2008; Snow
et al., 2011; Yi et al., 2013). However, we found no evi-
dence to show that TD individuals and high-functioning
individuals with ASD differ on either eye or mouth
looking time. Given the high degree of variance between
different movies in our own dataset, it is possible that the
differences in results from different studies reflect sample-
dependent findings more than social processing in ASD.

Deviations in gaze are likely a reflection of ASD defi-
cits in neural systems that modulate complex social
behaviors. This is evidenced by our previous research in
which we link aberrant gaze and atypical neural mecha-
nisms in the “social brain” (Ramot et al., 2020). This is
also supported by Avni et al. (2020), whose findings
report reduced eye movement typicality in those with
ASD, as well as a correlation between individual gaze idi-
osyncrasies and ASD severity. The present study elabo-
rates on the typicality of ASD gaze by pinpointing the
manner in which individual behavior varies. First, our
participants with ASD display significantly greater
within-group variance in time spent fixating on the face
compared to TD individuals. Second, individuals with
ASD display significantly reduced overall time spent
looking at the face and in particular the central face
region. Lastly, this group has significantly reduced inter-
nal consistency in the viewing of the different facial
features.

As evidenced by previous work, TD gaze allocation
toward the nose may demonstrate several visual tenden-
cies that are typical in normative populations. Findings
show that TD individuals initially fixate on the geometric
center of the face (i.e., the eye–nose region) before explor-
ing other features (Bindemann et al., 2009). Rogers
et al. (2018) report the existence of an “eye–mouth gaze
continuum” in which TD individuals experiencing real-
world interactions distribute their gaze in the area
between eye and mouth regions, with variation in specific
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feature preference. Face perception studies commonly
report this scan path in TD participants (Bindemann
et al., 2009; Hsaio & Cottrell, 2008), as well as preferen-
tial attention to the area around the center of the nose
during face recognition tasks (Hsaio & Cottrell, 2008).
Nose looking is shown to provide a central point where
the viewer’s periphery can take in information from the
entire face (Hsaio & Cottrell, 2008). This optimizes face
perception, in accordance with the holistic nature of
face recognition in TD individuals.

Based on what is known about the centrality of nose
fixations, the lack thereof in those with ASD may suggest
local processing with a bias toward local facial features.
Prior ASD research not only reports evidence for local
bias in visual perception, but also suggests that
local processing tendencies in autism may contribute to
the associated overall difficulty with integrating features
to create a global representation (Nayar et al., 2017;
Shah et al., 2016). Reduced nose-looking may reveal a
developmental behavior that results from atypical social
brain neural systems.

Furthermore, individuals with ASD show greater
attention to background stimuli compared to TD peers,
despite saliency analyses revealing that both groups
attend to similar low-level features when viewing the
background. The question remains what factors beyond
pixel-level salience draw the sustained attention of those
with ASD. Xu et al. (2014) discuss a multi-level architec-
ture of salience beyond individual pixels; factors such as
object- and semantic-level salience significantly capture
human gaze as well. Our rich and complex stimuli feature
various characteristics that are known to have heightened
visual salience (e.g., faces, emotion, motion, and touched
objects; de Haas et al., 2019). Thus, several levels of
salience are possibly in effect. ASD background viewing
may signify attentional impairments and/or a greater
interest in competing non-social stimuli over socially rele-
vant information and low-level salient features. Future
investigations should examine multi-layered salience
information for a comprehensive view of preferential
attention to non-social features in ASD.

It is important to note that our study utilizes differ-
ent, short movie clips. Using heterogenous movies can
support the generalizability of looking time proportion
as a stable individual trait. However, it is possible that
studies may need fewer clips to reach gaze stability if
they are investigating gaze in consistent or homogenous
content. Additionally, there are many other elements
which could affect looking time proportion which we
did not test for in this study. These data were all col-
lected in a single session, and may not capture individ-
ual variation across days, though previous studies have
shown stability in this regard (Mehoudar et al., 2014).
Similarly, all the movies depict social interactions, and
the task was a free viewing task. Different task context
or very different movie content may also affect gaze pat-
terns (Speer et al., 2007). Future studies may seek to

examine how much data would be necessary to robustly
estimate individual fixation preferences when using a
single, longer movie clip.

It should also be noted that many studies only include
eye and mouth regions in facial feature coding. We
expand on previous work by distinguishing the eye,
mouth, and nose regions in our core facial feature analy-
sis, which in turn revealed data-driven results that diverge
from findings of exclusive eye- and mouth-directed ana-
lyses (Rice et al., 2012; Speer et al., 2007). The present
study’s machine learning algorithm fulfills the need for a
quantifiable and data-driven approach to eye tracking
segmentation. Our ANN optimizes the use of ample and
diverse stimuli, while eliminating some of the typical dif-
ficulties associated with manual techniques. We encour-
age future studies to adopt similar automatic stimuli
segmentation techniques to enable the use of the large
amounts of stimuli needed to test hypotheses about social
gaze processing in populations.
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