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Abstract

In this paper we show that a corpus of a few thousand Wikipedia articles about
concrete or visualizable concepts can be used to produce a low-dimensional se-
mantic feature representation of those concepts. The purpose of such a represen-
tation is to serve as a model of the mental context of a subject during functional
magnetic resonance imaging (fMRI) experiments. A recent study [19] showed
that it was possible to predict fMRI data acquired while subjects thought about
a concrete concept, given a representation of those concepts in terms of semantic
features obtained with human supervision. We use topic models on our corpus
to learn semantic features from text in an unsupervised manner, and show that
those features can outperform those in [19] in demanding 12-way and 60-way
classification tasks. We also show that these features can be used to uncover
similarity relations in brain activation for different concepts which parallel those
relations in behavioral data from human subjects.
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1. Introduction

Over the last few years machine learning classifiers have increasingly been
used to demonstrate that the pattern of brain activation measured with func-
tional magnetic resonance imaging (fMRI) contains information about stimuli
being seen, subject decisions and many other aspects of task performance (see
[9], [18], [26], [10] and [29]). Recently, however, interest has expanded to dis-
covering how the information present is encoded and also to testing hypotheses
about that encoding. One approach to doing this is to postulate a model for
the information being created in response to stimuli and learning a mapping
between that information and brain activation patterns; this model can then
be tested on new stimuli not used in building it and for for which the true
brain activation patterns are known (a very elegant example of this for visual
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cortex by [11]). Conversely, one can also test such models by trying to repro-
duce the stimulus that gave rise to the brain activation patterns from those
patterns. Examples of these would be reconstruction of a simple visual stimulus
[20], a pattern of dots mentally visualized by the subject [32] and producing a
structural and semantic description of a stimulus scene [23].

All of the examples above pertain to visual cortex and pictorial stimuli, as
there are many models for the information processing being carried out by visual
cortex. But what model should one consider if one is interested in the meaning
of a concept, as opposed to its visual representation?

When considering the representation of the meaning of a concept in some-
one’s mind, one possible view is that the representation is made up of several
semantic features, present to varying degrees. Examples could be whether it
is alive versus inanimate or, if the latter, a man-made artifact versus some-
thing natural. Features can also be shared between concepts belonging to the
same semantic category, e.g. one would expect “saw” and “hammer” to share
something by virtue of their both being tools.

A pioneering study [19] showed that one could predict the brain activation
in response to a line drawing of a concrete concept, together with the noun
naming it, if given semantic feature values for that concept and the patterns of
brain activation for other concepts. The authors also introduced a procedure for
obtaining semantic feature values from a text corpus which required specifying
a number of verbs and computing their occurrence with nouns naming concepts
in a large corpus.

Our paper is close in spirit to this, and is motivated by two related questions.
The first is whether one can discover a “semantic space” to represent concrete
concepts, by learning semantic features from a relatively small corpus. Our
first contribution is to show that this can be done from a corpus containing
Wikipedia articles defining concepts, rather than just instances of the words
naming the concepts, as would be the case in standard corpora. Furthermore,
the use of topic models [3] for this means that any number of features may
be produced in principle, sidestepping the need to specify verbs. The second
question is how to determine whether such a corpus reflects, to some degree,
the semantic representations of those concepts in the mind of human subjects,
using fMRI data. For this we will show that we can use the semantic feature
representation learned to predict semantic feature values from brain activation,
instead of brain activation from semantic feature values. This semantic feature
representation can be used to decode the subject’s mental context, as well as
reveal similarity structure between representations of related concepts that is
not readily apparent if we solely consider fMRI data.

2. Related work

There are many theories for how semantic information is represented in the
brain (see [22] for an extensive review). Almost all of these theories rely to
some extent on the notion of features, the attributes of a particular concrete
concept [16] (e.g. “is alive” or “is made of wood”). From that perspective,



features are used for including or excluding concepts from particular categories,
for judging similarity between concepts or for making semantic judgments (often
in conjunction with categorical or taxonomic structure).

One way of obtaining features is by painstakingly asking subjects to produce
them for many different concrete concepts, and tallying those that are named
often, those that are deemed most important to distinguishing concepts or cat-
egories, etc. The result of this is known as a semantic feature production norm
[16]. This does not guarantee that every relevant feature will be generated — in
fact, those that are distinctive are more likely to come up — and has the further
problem that no data is available for concepts not included in the norm.

It is possible to address this issue without resorting to subjects by making
the assumption that semantic features which distinguish the meanings of con-
cepts are reflected in the usage statistics of the nouns naming them within a
very large text corpus. This relies on the notion that those features would be
shared by most people thinking about the same concept, as talking to someone
about concepts such as chair or table requires a common understanding of the
characteristics of that concept. The pioneering paper that inspired our work
[19] uses this approach, relying on one further assumption.

Some of the theories treat semantic knowledge as something stored amodally,
independent of perception or action relevant to the acquisition and use of the
knowledge [6]. Others postulate that that knowledge is stored involving sensory
or functional processing areas and, furthermore, making a semantic judgment
might require retrieval of interaction or perception with the situation the judg-
ment is about and possibly even a simulation of that (e.g. What does a peach
feel like when held? What happens once it is dropped?) [1].

Motivated by the latter perspective, [19] assumed that key semantic fea-
tures in the meaning of a concept would correspond to basic sensory and mo-
tor activities, actions performed on objects, and actions involving changes to
spatial relationships. They then hand-picked 25 verbs! related to these activ-
ities and actions and computed the co-occurrence of the noun naming each
concept with those 25 verbs in a large text corpus (Google n-gram corpus
http://ngrams.googlelabs.com). The 25 co-occurrence counts for each con-
cept became the semantic feature values, after normalization to a unit length
vector. The hypothesis underlying this procedure is that the 25 verbs are a
good proxy for the main characteristics of a concept, and that their frequent
co-occurrence with the corresponding noun in text means that many different
sources (and people) have that association in mind when using the noun.

The authors then showed that these features corresponded, to some degree,
to information present in the brain of a subject; this was accomplished by show-
ing that one could predict the brain activation in response to a line drawing of
a concrete concept, together with the noun naming it, if given semantic feature
values for that concept and the patterns of activation for other concepts.

Isee, hear, listen, taste, smell, eat, touch, rub, lift, manipulate, run, push, fill, move, ride,
say, fear, open, approach, near, enter, drive, wear, break and clean



There are multiple approaches for learning features from text data, with
Latent Semantic Analysis (LSA,[13]) being perhaps the best known, and a tra-
dition of using them to perform psychological tasks or tests with word stimuli
(see [31], [8] or [21] for applications to EEG, for instance). This work can be
seen analytically as operating on a word-by-document matrix and using that
to derive a lower-dimensional vector space (or a simplex) where words reside;
an excellent review of this and related vector space approaches is [33]. [12]
has shown that features similar to those in [6] — in the form concept-relation-
feature — could be extracted from a subset of 500 articles of Wikipedia about the
concepts in that study, showing in addition that definitional text carried more
information for this purpose than a general purpose corpus (independently of
our work, an early version of which [28] appeared at the same workshop). In [7]
the same method was used to extract features from the British National Corpus
data set [14], which were then used to replicate the analysis in [19], with the
goal of validating the features extracted. [15] learns semantic features from a
matrix of co-occurrences between the 5000 most common words in English, to
perform the same prediction task as [19], on their data set and also using the
Google n-gram corpus. This is perhaps the most closely related work, though
both our approach to producing semantic features and the classification tasks
we use are different. [4] uses semantic features derived from the [6] feature norm
to predict fMRI activation.

The approach we will deploy is Latent Dirichlet Allocation (LDA, [3]). LDA
produces a generative probabilistic model of text corpora where a document
is viewed as a bag-of-words (i.e. only which words appear, and how often,
matters), with each word being drawn from a finite mixture of an underlying set
of topics, each of which corresponds to a probability distribution over vocabulary
words; this is also known as a topic model. Note that, in either LSA or LDA,
what is being modeled are documents, in terms of the learned semantic features
specific to the approach used; the models can then be used to make psychological
predictions about words and the concepts they refer to. A particularly relevant
example of the use of topic models for our purpose is [8], which works with a text
corpus containing educational text used in various school grades. The authors
show that a topic model of this corpus is capable of capturing much of the
structure of human semantic representation, as evidenced by its ability to predict
the human subject word association patterns in [25] or its success in a number
of other tasks that involve memory or linguistic processing in human subjects.
While this work could have been done using LSA to extract a representation
vector for each document, LDA was preferable both for practical reasons (the
topic probability vectors are not forced to be orthogonal, and are restricted to
add up to 1, thus making the presence of one topic detract from the presence of
another) and more conceptual ones (LDA can deal with certain aspects of word
association that are troublesome for LSA, as detailed in [8]).

We will analyze the same data set as [19], which was very generously made
public by the authors. In this experiment, the task in each trial was to think
of the meaning of a given concept for three seconds, after seeing a line drawing
of that concept and the noun naming it. Before the experiment, subjects were
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Figure 1: A complex pattern of activation is expressed as a combination of three basic patterns.

asked to think about certain aspects of the concept to have in mind (properties,
interaction, etc) and write them down next to the corresponding line draw-
ing/noun for that concept. Subjects reported that this helped them reliably
think of the same things in response to the same stimuli, and this is the precise
notion of mental context that we will use.

The problem we want to address is how the mental representation of that
concept is present throughout the brain, as measured through fMRI. If we accept
that the mental representation is composed of semantic features, then one could
envisage decomposing the pattern of brain activation while thinking about the
concept into a combination of basis patterns corresponding to key semantic
features of the stimulus. This is illustrated in Figure 1, where a complex pattern
is split into three simpler ones forming a basis. The value of each semantic
feature indicates the degree to which its basis pattern is present; given those
values, these patterns can be learned from fMRI data.

As described earlier, [19] finds semantic feature values by computing 25 co-
occurrence values for each concept. This approach is limited by the fact that
it requires stipulating 25 verbs The verbs were selected to capture a range of
characteristics described above, but this does not guarantee that those will be
all the ones that are relevant, even for concrete concepts.

We will use topic models to learn semantic features from a text corpus se-
lected for this purpose, which we describe in more detail in Section 3. This
happens in an unsupervised manner and without a need to specify verbs or
any other proxy indicator. The essential characteristic of the corpus is that it
is composed of Wikipedia (http://en.wikipedia.org) articles about concrete
or visualizable concepts, including those corresponding to the 60 used in [19]).
Articles are definitional in style, refer to many other concrete concepts, and also
edited by many people to contain essential shared knowledge about the subject
of the article. We make the assumption that this instance of language is particu-
larly suitable to reflect the structure of the real world as represented in multiple
minds [30], but this is not something that has been conclusively demonstrated.

A very important advantage of definitional articles is that one can take the
semantic feature representation of the article for a concept under the topic
model (its topic probabilities), as it is a document, and use it directly as the
semantic feature representation for the corresponding stimulus concept. This
is in contrast to representing words in a low-dimensional space and using the
representation of a word naming a concept as the representation of that concept,
as one might do if using LSA. This relieves us from the burden of having to per-
form word sense disambiguation [24] when generating features, as a word might



have different meanings in different documents. From the [33] perspective, we
are deriving a document representation from a term-document matrix (whereas
[12], for instance, is using a word-context matrix).

In order to show that these semantic features do indeed capture relevant
semantic structure, we will 1) learn the mapping between a feature and a brain
activation pattern, 2) classify brain images taken while the subject sees a novel
concept not used in the training set, by predicting the values of semantic features
present and 3) use the model to uncover similarity relations in brain activation
paralleling similarity structures in human semantic representations.

3. Materials and methods
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Figure 2: A: The Wikipedia sub-corpus is transformed so that each article is associated with
a vector of topic probabilities and each topic with a probability distribution over words. B:
The 4 stages in which topic probabilities are used: 1) learning basis images, 2) predicting
topic probabilities for test images, 3) using these to do classification and 4) comparing their
similarity to predicted topic probabilities for test images of other concepts. This is an iteration
of a cross-validation loop, with example images for “hammer” as the test set.

3.1. Data
We use the 9 subjects in the data set from [19]. The experimental task was
to see a line drawing of a concept and the noun naming it, for three seconds,



thinking about its properties. The stimulus set contained 60 concepts from
12 categories: animals, body parts, buildings, building parts, clothing, furni-
ture, insects, kitchen, man-made objects, tools, vegetables and vehicles. The
experiment had 360 trials, divided into 6 epochs during which the 60 concepts
appeared as stimuli (there were hence a total of 6 presentations of each concept).
An ezample image is the average of images taken 4-7 seconds after stimulus onset
in a trial and has two labels, the concept and the category it belongs to.

3.2. Semantic Features

The experiments described in this paper rely on using two different kinds
of semantic features: Wikipedia Semantic Features (WSF) and Google Co-
occurrence Features (GCF, used in [19]. These will act as low-dimensional
representations of fMRI data, to be used in decomposing each example into
constituent basis images.

To obtain the Wikipedia Semantic Features we started with the classical
lists of words in [27] and [2], as well as modern revisions/extensions [5] and [34],
and compiled words corresponding to concepts that were deemed concrete or
imageable, be it because of their score in one of the lists or through editorial
decision. We then identified the corresponding Wikipedia article titles (e.g.
“airplane” is “Fixed-wing aircraft”) and also compiled related articles which
were linked to from these (e.g. “Aircraft cabin”). If there were words in the
original lists with multiple meanings we included the articles for at least a few of
those meanings, as suggested by disambiguation pages or free association (e.g.
including “Bear_claw_(pastry)” and “Claw” together with “Bear”).

We stopped the process when we had a list of roughly 3500 concepts and their
corresponding articles. We had to restrict the number of articles included for
two reasons. The first is that we hadn’t yet developed a good, semi-automatic
way of finding Wikipedia articles for concepts we knew were concrete and visu-
alizable, as well as those related to them (e.g. airplane is Fixed-Wing Aircraft
in Wikipedia, and we might want to include Airplane Seat and Airplane Cabin).
The second is that training topic models quickly became more computationally
demanding as the number of articles increased.

We used Wikipedia Extractor ? to remove HTML, wiki formatting and an-
notations and processed the resulting text through the morphological anal-
ysis tool Morpha [17] to lemmatize all the words to their basic stems (e.g.
“taste” " tasted”,” taster” and “tastes” all become the same word).

The resulting text corpus was processed with the topic modeling software
from [3] to build several LDA models. The articles were converted to the re-
quired format, keeping only words that appeared in at least two articles, and
words were also excluded resorting to a custom stop-word list. We run the
software varying the number of topics allowed from 10 to 100, in increments
of 5, setting the o parameter to -2>— (following [8], though a range of mul-

#topics
tiples of the inverse of the number of topics yielded comparable experiment
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results in terms of peak accuracy, albeit using different numbers of topics). In-
tuitively, a controls how semantically diverse documents are, i.e. the number
of different topics a document will tend to be represented as having. For a
given number of topics K, this yielded distributions over the vocabulary for
each topic and one vector of topic probabilities per article/concept; this vector
is the low-dimensional representation of the concept, as depicted in Figure 2A.
Note also that, since the probabilities add up to 1, the presence of one semantic
feature trades off with the presence of the others, something that is desirable
if expressing one brain image as a combination of basis images weighted by
the features. The 60 x 75 matrix on the right of Figure 3 shows the value
of these features in a 75 topic model for the 60 concepts considered, sorted
by category. A visualization of the topic representations of concepts and the
word distributions associated with them in a 40-topic model can be found at
http://www.princeton.edu/~matthewb/wikipedia.

The Google Co-occurrence Features are the semantic features used in [19] to repre-
sent a given stimulus. They were obtained by considering co-occurrence counts of the
noun naming each stimulus concept with each of 25 verbs in a text corpus, yielding a
vector of 25 counts which was normalized to have unit length. The low-dimensional
representation of the brain image for a given concept is thus always a 25-dimensional
vector. The 60 x 25 matrix on the left of Figure 3 shows the value of these features
for the 60 concepts considered.
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Figure 3: The value of semantic features for the 60 concepts considered, using GCF with 25
verbs (left) and WSF with 75 topics (right). The 60 concepts belong to one of 12 categories,
and those are arranged in sequence (5 animals are followed by 5 body parts, which are followed
by 5 buildings, etc). Between GCF and WSF (center) is a matrix of correlations between every
pair of GCF and WSF vectors of predicted features across concepts.

Finally, we can consider the question of how similar GCF and WSF representations
are, i.e. whether a given GCF feature has values across examples similar to a given
WSF feature. We computed the correlation between each possible pair of GCF and
WSF features across 60 concepts, which is shown on the center of Figure 3. Quali-
tatively speaking, around half of the GCF have high correlation with WSF, but the
rest have no direct counterpart; GCF is thus not a subset of WSF. The fact that
several of those remaining features correlate partially with WSF suggests that the lat-
ter, being more sparse, may correspond to groupings of examples that are not clearly
distinguished from others by GCF.



3.8. Using semantic features with fMRI data

Overview. Figure 2B shows the 4 stages where semantic features play a role in our
experiments, all of which are described in detail later. These 4 stages take place inside
a cross-validation loop, where all the examples images for the “hammer” concept are
left out as the test set and example images for the remaining concepts are the training
set. In stage 1 the topic probability representations of the articles corresponding to the
training set concepts are used together with their example images, to learn an image
basis with one image per topic. In stage 2, the image basis is used with the example
images of the test concept to predict a topic representation for each example image.
In stage 3, we classify by considering whether the predicted topic representation is
closest to the topic representation of the test concept (concept classification) or of any
of the concepts in its semantic category (category classification). The predicted topic
representation is also stored for a different purpose in stage 4, comparing it to the
predicted topic representations for all other examples when they were in the test set.
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Figure 4: top: An example brain image can be written as a row vector, and the combi-
nation as a linear combination of three row vectors. bottom: A data set contains many
such brain images, forming a matrix X where rows are examples and whose low-dimensional
representation is a matrix Z.

Notation. As each example is a 3D image divided into a grid of voxels, it can be
unfolded into a vector x with as many entries as voxels containing cortex. A data set is
anXm matrix X where row ¢ is the example vector x;. Similarly to [19], each example
x will be expressed as a linear combination of basis images b1,...,bk of the same
dimensionality, with the weights given by the semantic feature vector z = [z1, ..., zk],
as depicted in the top of Figure 4. The low-dimensional representation of data set X
is an x K matrix Z where row ¢ is a semantic feature vector z; and the corresponding
basis images are a K X m matrix B, where row k corresponds to basis image by, as
shown in the bottom of Figure 4. If referring to columns of matrices, e.g. column j of
X, we will use the notation X (:, ). The notation x’ indicates the transpose of vector
X.

Learning and prediction. Learning the basis images given matrices X and Z (left of
Figure 5) can be decomposed into a set of independent regression problems, one per
voxel j, i.e. the values of voxel j across all examples, X(:,J), are predicted from Z
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Figure 5: left: The semantic feature classification experiment requires learning an image
basis from a set of training examples and their respective semantic feature representations.
This is used to predict semantic feature values for test set examples and from those one can
classify against the known semantic feature values, either which of 12 categories or which of 60
concepts. right: The voxel classification experiment replicates the main one in [19]. Semantic
feature representations of the 2 test concepts are used, in conjunction with the image basis
learned on the training set, to predict their respective test examples and use that prediction
in a 2-way classification.

using regression coefficients B(:, j), which are the values of voxel j across basis images.
Predicting the semantic feature vector z for an example x is a regression problem where
x" is predicted from B’ using regression coefficients z’' = [21,...,zk]". For WSF, the
prediction of the semantic feature vector is done under the additional constraint that
the values need to add up to 1, as they are probabilities. Any situation where linear
regression was unfeasible because the square matrix in the normal equations was not
invertible was addressed by using a ridge term with the trade-off parameter set to 1.

4. Results

4.1. Classification experiments

Classification using semantic features. We would like to ascertain how much informa-
tion about the category and the identity of a stimulus there is in an example image
coming from a single task trial. We do this by predicting semantic features — either
WSF or GCF — for an example and classifying category (12-way) or concept (60-way)
from them. As illustrated on the left of Figure 5, training examples get used together
with their semantic feature representation to learn a set of basis images, with the goal
of reconstructing those training examples as well as possible. The basis images are
used, in turn, to predict semantic feature values for test examples determining, in
essence, which semantic features are active during a test example. Classification is
done by assigning the label for the example in the original data with the most similar
semantic feature values, as judged using correlation.

We use a 60-fold leave-one-concept-out cross-validation, testing on all 6 examples
of the withheld concept and performing the following steps in each fold:

1. from each training set Xi,q4in and corresponding semantic features Zi,qin, select
the top 1000 most reproducible voxels and learn an image basis B using those
(see below for more information on this selection criterion)

2. use the test set Xies: and basis B to predict a semantic feature representation
Zpred for those examples

3. use nearest-neighbor classification to predict the labels of examples in X¢est, by
comparing Z,req for each example with known semantic features Z

10
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Figure 6: A comparison between the performance of GCF and WSF (10-100 topics) accuracy
in the category (left) and concept (right) classification tasks. Curves are the average over 9
subjects. In each plot WSF is red (full line), GCF is blue (constant dashed line) and chance
level is black (constant dotted line). These results were obtained using leave-one-concept-out
cross-validation.

There is always one semantic feature vector for each different concept in Z. This
procedure is unbiased, and we tested this empirically using a permutation test (ex-
amples permuted within epoch) to verify the accuracy results for either task in that
situation were at chance level.

Figure 6 shows the results for both category (left) and concept (right) classification;
each plot contrasts the accuracy obtained using GCF with that obtained using WSF
with 10-100 topics, in increments of 5, averaged across all subjects. We also performed
a per-subject comparison at each number of topics, testing whether WSF was better
than GCF, as deemed by a paired t-test (0.05 significance level, uncorrected). In
general, WSF is either significantly better or slightly above GCF in both category and
concept classification. Chance levels for the category/concept tasks are % = 0.0833
and & = 0.0167, with thresholds for a p-value of 0.01 under the null hypothesis that
accuracy is at chance level of 0.12/0.035, respectively. One could ask whether the
improvement is solely due to the ability to generate more than 25 features or also to
the fact we used LDA, and this is something we address on the next section.
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Figure 7: Same as Figure 6, but using a statistical criterion for determining how many voxels
to select per subject.

Voxel selection is necessary to obtain the best results in this experiment; that
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said, results without it are still above chance at least for the category task, as seen
in Figure 8. The reproducibility criterion we used identifies voxels whose activation
levels across the training set concepts bear the same relationship to each other over
epochs (mathematically, the vector of activation levels across the sorted concepts is
highly correlated between epochs). As [19] points out, we do not expect all — or even
most — of the activation to be differentially task related, rather than uniformly present
across conditions, or consistent between the various presentations of the same stimulus
concept. We chose to use 1000 rather than 500 reproducible voxels, as the results were
somewhat better (and still comparable with 2000 voxels, say), but it is legitimate to
consider how sensitive the results are to this choice. Given that the reproducibility
criterion for selecting voxels is essentially a correlation computation, one can find a
threshold at which the null hypothesis of there being no correlation has a given p-
value, using the Fisher transformation. For instance, given that 59 voxel values are
compared across 6 X 5/ pairs of runs, observed correlation r = 0.1 has a p-value of
0.01 if the true correlation p = 0. Using this threshold gives us a different number
of voxels in each subject, ranging from approximately 200 to well over 2000, but the
results are still very similar to those obtained with 1000 voxels, as seen in Figure 7.
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Figure 8: Same as Figure 6, but using no voxel selection.

Classification using co-occurrence features learned from our corpus. A reasonable ques-
tion one can ask is whether it is really necessary to use topic models over this corpus
in order to learn new features that are useful for classification. In order to test this,
we applied the same approach as [19] to our corpus, computing co-occurrence counts
between the 60 nouns naming the concepts and the 25 verbs they chose and generating
normalized features from these (Wikipedia Co-occurrence features, WCF). A verb and
a noun were deemed to co-occur if they appeared within 5 words of each other.

Table 1 shows the results in both category and concept tasks using GCF and WCF.
Across most subjects performance was often worse using WCF than GCF, especially
in the category task. A possible explanation might be that n-gram co-occurrence does
carry information, as shown by GCF, but requires a large corpus to yield reasonable
co-occurrence estimates. WSF uses co-occurrence of multiple words in an article in
determining the probability distribution for each topic, and hence appears to make a
more efficient use of the information available.
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P1 P2 P3 P4 P5 P6 p7 P8 P9
category task
GCF 0.217 0.169 0.133 0.211 0.144 0.122 0.119 0.108 0.133
WCF 0.181 0.128 0.125 0.217 0.103 0.089 0.125 0.083 0.139
noun task
GCF 0.019 0.031 0.025 0.028 0.044 0.031 0.008 0.017 0.019
WCF 0.022 0.017 0.008 0.033 0.022 0.011 0.031 0.014 0.017

Table 1: Classification accuracy in the category (12-way) and concept (60-way) tasks, using
the 25 semantic features in [19] (GCF) and the 25 semantic features derived from our corpus
using their approach (WCF), across 9 participants.

4.2. Comparison of low-dimensional representations

In the previous section we were concerned with accuracy as a quantitative gauge
of how well a given low-dimensional representation of the fMRI data could be used to
decompose it into a basis of images with generalization power. Intuitively, if the feature
representation of the examples of a given concept at test time allows classification,
then the basis images used to predict that representation do capture patterns of brain
activation that correspond to semantic features underpinning the representation of
that concept. In order to show how one might go beyond this, we will analyze a model
for subject whose data yielded the highest classification accuracies (subject P1, close
to 40%/10% for category/concept prediction using a WSF model with 75 topics).

A more nuanced measure of how good a model is is whether it assigns semantic
feature representations to the various concepts that mirror those in the minds of sub-
jects. In particular, we are interested in whether concepts which are related in practice
are represented by a model in more similar ways than those which are not. In this
experiment relatedness maps roughly to being in the same semantic category, or in
semantic categories that are connected in some way (e.g. “Buildings” and “Building
parts”).

While not having direct access to mental representations, if our interest is in con-
cept relatedness we can consider behavioral data from word association norms such
as [25]. In this particular experiment, subjects were given cue words and asked to
produce a new word associated with the cue. The end result was a probability dis-
tribution of associates for each cue word. These data were used by [31] to produce a
low-dimensional Word Association Space (WAS), in which each word was represented
as a vector and words with similar association patterns were placed in similar regions
of the space (i.e. vector distance reflects similarity of association pattern). One way
to use this information for our purpose is to compute a matrix with word similarities
as a summary of the structure of semantic association.

We selected the WAS vectors for the nouns naming the 60 concepts we considered
and computed their correlations, a result shown in the leftmost column of Figure 9.
There are salient blocks along the diagonal that correspond to concepts in the same
category, but the similarity stretches across categories as well, e.g. body parts and
tools, buildings with building parts and man-made objects (yellow to orange rather
than the more intense brown). The WAS similarity matrix will act as a reference for
whether any pair of concepts is related.

Before considering fMRI data, we can examine the similarity structure of WSF
and GCF representations of the 60 concepts as obtained from text alone. This is
shown in the middle left column of Figure 9, with WSF above and GCF below. For
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Figure 9: This figure compares several representations of either the 360 examples (6 presen-
tations of each concept) or 60 concepts (if fMRI, the average of those 6 presentations). The
concepts/examples in each plot are always arranged so that those belonging to the same se-
mantic category appear in sequence and the first member of each sequence is labeled with
the category name (if considering examples, multiple presentations of the same concept are
adjacent). left: Correlation between the low-dimensional representation of nouns naming
the concepts in Word Association Space, derived from human subject behavior. middle
left: Correlation between the low-dimensional representation of concepts in WSFT75 (top)
and GCF (bottom), both learned from text corpora. middle right: Correlation between
the low-dimensional representations predicted for test examples with WSF75 (top) and GCF
(bottom), from fMRI data (these plots are 360 x 360). right: Correlation between each
example image at test time with all other examples, computed across the 1000 voxels selected
from them (this plot is 360 x 360).

each concept, the plot shows the correlation of its semantic feature vector with the
semantic feature vectors of the other concepts. There are diagonal blocks in both rep-
resentations, corresponding to within-category similarity, but the pattern of confusion
between categories is more similar between WSF and WAS. We had no a priori expec-
tation regarding whether GCF or WSF would be closer to WAS, since for the latter
it was possible that nouns naming related concepts would both appear close to the
same verbs, giving rise to the similar feature values. These results indicate both that
the WSF representation reflects relatedness of concepts and that GCF representations
are similar for many unrelated concepts (as indicated by the density of high similarity
across many between-categories concept pairs).

Armed with the above, we can now examine the extent to which the semantic
feature values predicted from an fMRI example using a GCF or WSF image basis
have any of the similarity structure in WAS or in the matrices derived solely from
text. This is shown in the middle right column of Figure 9, with WSF above and GCF
below. The matrices contain the similarity between the semantic features predicted
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for each concept when it was in the test set — all 6 presentations of a concept are in
the test set at the same time — and all other examples when they were in the test
set. These matrices are thus 360 x 360, sorted by category, with the 6 presentations of
each concept adjacent to each other. WSF recovers much of the similarity structure
between each concept and the others that was seen on text, using fMRI data from
a single trial. This indicates that the basis images learned on the training set do
generalize to the extent that they can help predict the topic probabilities for a new
image at least at the category level. It is far less clear that the GCF features can
recover the similarity structure obtained with them in text.

Finally, we can look directly at the similarity between fMRI patterns for different
concepts, shown on the rightmost column of Figure 9. Each entry in the matrix is the
similarity between each example when it was in the test set and all other examples in
the training set, obtained by computing the correlation across the 1000 voxels selected
over the latter. The first thing worth noting is that similarity is high for most pairs of
concepts, possibly because voxels are selected for stability rather than how informative
they are in distinguishing concepts. The second is that the matrix looks rather similar
to the GCF matrix produced from the fMRI data, suggesting that in that case the
GCF text model has less of an influence in the representations predicted than happens
with WSEF.

This analysis is an attempt at understanding the structure of similarity between
concept representation and giving us a sense of how these echo the relatedness between
concepts measured in behavioral data, rather than a systematic study. Although we
are presenting a single subject, the overall results remain similar for other subjects,
degrading as the peak accuracy in category/concept prediction degrades. One could
also conceive of using other measures of semantic behavior, or using our model to
generate predictions about word association (as suggested in [8]).

Replication of the 2-way classification experiment using vozel values in [19]

| P1 P2 P3 P4 P5 P6 p7 P8 P9
GCF 0.79 075 0.73 079 082 0.73 0.75 0.74 0.70
Org 083 076 078 0.72 0.78 0.85 0.73 0.68 0.82
WSF25 0.78 0.60 0.66 0.83 0.67 071 0.79 0.56 0.64
WSF50 0.84 0.63 0.68 085 068 0.72 0.77 0.67 0.73
WSF75 0.88 073 0.78 087 074 0.74 0.79 0.71 0.74
WSF100 | 0.74 0.65 0.67 0.77 0.64 067 0.74 0.65 0.71

Table 2: Results of a replication of the leave-2-concepts-out 2-way classification experiment
in [19].For subjects P1-P9, GCF represents the mean accuracy obtained using GCF (across
1770 leave-2-out pairs), Org the mean accuracy reported in [19] and the remaining columns
the mean accuracy obtained using WSF with 25, 50, 75 and 100 topics.

Classification using vozel values. The main experiment in [19] entailed predicting the
fMRI activation for unseen stimuli and using that to perform a forced-choice 2-way
classification from the predicted brain image, as schematized in the right of Figure 5.
Note that this is a completely different prediction task from what was described in
previous section, both in terms of what is predicted — fMRI activation rather than
semantic features — and also in being 2-way. We replicated this experiment using both
GCF and WSF representations.

In more detail, the authors considered the 60 average examples for each stimulus
concept (averaging over the 6 presentations) and, in turn, left out each of 1770 possible
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Figure 10: Results of a replication of the leave-2-concepts-out 2-way classification experiment
n [19]. Average score across the 9 subjects for all numbers of topics.

pairs of such average examples. For each left out pair, they learned a set of basis images
using the remaining 58 examples and their respective GCF representations. They then
used the GCF representation of the two left-out examples and the basis to generate
a predicted example for each one of them. These were used in a two-way matching
task with the actual average examples that were left out, where the outcome was
deemed correct if the predicted image for either concept was closer to the image of the
corresponding left-out concept than that of the other concept. Note that learning the
basis or making the prediction was not done over the entire brain but over a selection
of 500 stable voxels, as determined by computing their reproducibility over the 58
examples in each of the 1770 training sets.

Table 2 shows the mean accuracy across 1770 leave-2-out pairs using GCF, the
mean accuracy reported in [19] and the mean accuracy using WSF with 25, 50, 75
and 100 topics, for the 9 subjects. Figure 10 shows the same results averaged across
subjects. We were not able to exactly reproduce the GCF numbers in [19], despite the
same data preprocessing, as far as we could ascertain through supplementary materials
and personal communication with one of the authors. The data preprocessing we used
was to make each example mean 0 and standard deviation 1, prior to averaging all the
repetitions of each concept, and then subtracting the mean of all average examples
from each one. We used the same voxel selection procedure (using 500 voxels, code
yields the same voxel ranking) and the same ridge regression function (although [19]
does not mention the value of the ridge parameter A, which we assumed to be 1).

It takes around 75 topics for most subjects to display a performance equal to or
better than GCF, which we think is due to two different aspects in which our models
are sparse. The first is that many topics have probability close to 0 across all concepts,
as those topics are used to represent other parts of the corpus. The second is that
concepts tend to be represented by very few topics, mostly one or two category related
ones and later, as the number of topic increases, possibly a few that are more concept
specific.

We believe these two factors combine so that, with fewer than 40/50 topics, each
basis image learned will correspond to a category-focused topic, and hence share com-
mon activation for various concepts in that category rather than anything concept-
specific. As there won t be that many topics available — as some have probability close
to 0 regardless of how many topics the model has — it makes sense that this would
happen. This would lead the predicted patterns of brain activation for concepts in the
same category to be very similar until models with 40/50 topics or more are used.

Given that the 2-way classification task involves matching predicted brain images
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for 2 left-out nouns with their actual brain images, the inability to predict concept-
specific brain activation may disproportionately affect classification (whereas predict-
ing topic probabilities from brain images at a category granularity in the classification
problems in the main paper would be helped by this). In contrast, [19] use fewer
features but more of them are involved in the representation of each concept, so the
basis images should more effectively capture concept-specific brain activation.

5. Discussion

As discussed earlier, this work was motivated by two related questions. The first
is whether one can learn a “semantic space” to represent concrete concepts from a
relatively small corpus, if that corpus contains articles defining the concepts. The
second is how to determine whether such a corpus reflects, to some degree, the semantic
representations of those concepts in the mind of human subjects.

The fact that we could extract this from a corpus an order of magnitude smaller
than the one used in [13] or [8] suggests that definitional text is informative. That
said, this could only be demonstrated conclusively by learning topic models on an-
other corpus of the same size that was not definitional but where a document and its
representation could still be associated with a concept. The other contrast to make is
with the semantic feature representation of concepts used in [19], obtained from con-
sidering co-occurrence of nouns naming the concepts with verbs over 1,2, 3, 4, 5-grams
in a massive corpus. In this case, the fact that we can learn indicates the power of
leveraging co-occurrence of multiple words in a document — and the fact that each
topic can account for a large set of words at once. Our data set is naturally sparse
— 3500 articles x 50000 words — and hence a topic can easily account for the words
appearing in several related articles.

In order to tackle the second question we turned to fMRI images obtained while
a subject thought about different concepts. Together with the corresponding topic-
probability representation of those concepts obtained from text, they can be used to
derive a basis of fMRI images corresponding to the brain activation pattern elicited by
each topic. To show that the basis images generalize, we do this in a cross-validated
fashion and learn basis images from 59 out of 60 concepts in our fMRI data set.
The basis images can then be used to predict a topic probability representation from
the example images of the left-out concept. Any evaluation relying on this predicted
representation is then an evaluation of how well the basis images generalize to new
concepts; this is a function both of how good the test model is and the extent to which
the process of using basis images to derive the topic probabilities from fMRI data
predicts topic probabilities similar to those in the model.

We evaluated the model quantitatively by doing classification tasks at the concept
category and individual concept levels; category classification is a 12-class problem
with 30 examples per class whereas concept classification is a 60-class problem with 6
examples per class. Both because of these numbers and because some topics clearly
capture category level structure, we expected the former to be substantially easier
than the latter, which proved to be the case. Performing above chance in the latter
task indicates that there is some concept-specific information in the topic probability
representation, though the relatively low accuracy — under 5% for most subjects —
indicates this is absent for most of the concepts or harder to extract from the fMRI
data. From a more qualitative angle, and wanting to consider a criterion beyond
accuracy, we looked at the similarity of topic probability representations of concepts
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and the strength of association between those concepts in a behavioral task. As [8]
suggests, the topic model could be used to predict the associations between words
directly, providing a more quantitative measure instead, but this is beyond the scope
of the current paper. That said, an interesting avenue of research would be to attempt
to predict the results of classical norms (e.g. rankings of concreteness or visualizability
[27] [5], most common items in a semantic category [2] [34]) using our models and
subsets of the results in those norms. This would provide a completely different source
of constraints and evaluations for the quality of the representation embodied by the
model.

We compared our topic model concept representation with that used in [19] because
it seemed the most obvious benchmark. For predicting concept representation from
brain images of new concepts, our approach is as good or better; for predicting brain
images for new concepts, it takes several topics to reach the same performance as [19].

This comparison was made mostly to show that the model performed reasonably.
Our main interest is not, however, in showing an improvement with respect to [19]
but rather in demonstrating that this approach is feasible. Given that we do not have
to specify verbs to obtain semantic features, and that we can obtain models with
any number of topics (up to certain practical constraints), there is a lot of room for
further improvement. One possibility would be to have topics correspond to semantic
features at a finer grain than “category”. An example could be a “made of wood” topic
that would place heavy probability on words such as “brown”, “grain”, “pine”, “oak”,
etc. In this situation, there would be far more topics, each spreading probability over
fewer words; each concept would be represented by assigning probability to more of
these topics than is currently the case. It is conceptually straightforward to modify
parameters of topic models to yield this and other characteristics in each model, and
we are currently working on this direction.

A second possibility is the fact that this type of model opens the door to fMRI
experiments where a subject can read, instead of having purely visual stimuli. Starting
with a probability assignment over topics, perhaps suggested by task, a topic model
provides a formal mechanism for updating that assignment as each stimulus word is
read, and this could be used as a model of mental context on an image by image
basis. The ability to read would allow experiments on metaphor processing — given
example images for the concrete concepts underpinning the metaphors components
and meaning — or even possibly on abstract concepts; while it is straightforward to
produce a topic representation for the latter from the respective Wikipedia articles,
we do not yet know how useful those representations will be. We are currently piloting
a reading experiment to validate the idea of tracking mental context using the topic
model.
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