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Abstract

Brain imaging methods have long held promise as diagnostic aids for neuropsychiatric conditions with complex

behavioral phenotypes such as Attention-Deficit/Hyperactivity Disorder. This promise has largely been unrealized,

at least partly due to the heterogeneity of clinical populations and the small sample size of many studies. A

large, multi-center dataset provided by the ADHD-200 Consortium affords new opportunities to test methods for

individual diagnosis based on MRI-observable structural brain attributes and functional interactions observable

from resting state fMRI. In this study, we systematically calculated a large set of standard and new quantitative

markers from individual subject datasets. These features (>12,000 per subject) consisted of local anatomical

attributes such as cortical thickness and structure volumes, and both local and global resting state network

measures. Three methods were used to compute graphs representing interdependencies between activations in

different brain areas, and a full set of network features was derived from each. Of these, features derived from

the inverse of the time series covariance matrix, under an L1-norm regularization penalty, proved most powerful.

Anatomical and network feature sets were used individually, and combined with non-imaging phenotypic features

from each subject. Machine learning algorithms were used to rank attributes, and performance was assessed

under cross-validation and on a separate test set of 168 subjects for a variety of feature set combinations. While

non-imaging features gave highest performance in cross-validation, the addition of imaging features in sufficient

numbers led to improved generalization to new data. Stratification by gender also proved to be a fruitful strategy

to improve classifier performance. We describe the overall approach used, compare the predictive power of different

classes of features, and describe the most impactful features in relation to the current literature.
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INTRODUCTION1

Attention-Deficit/Hyperactivity Disorder (ADHD) is a complex developmental neuropsychiatric disorder2

characterized by abnormal inattentiveness, impulsivity, and hyperactivity. Recent estimates based on meta-3
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analyses from the literature suggest a worldwide prevalence rate of ∼ 5.29 ± 0.28% in children 18 years of1

age or younger (Polanczyk et al., 2007), making it among the most common childhood disorders. Many2

children diagnosed with ADHD continue to exhibit symptoms throughout adulthood. The Diagnostic and3

Statistical Manual-IV Text Revision (DSM-IV-TR) describes three different types of ADHD: a predominantly4

inattentive type, a fairly uncommon predominantly hyperactive-impulsive type, and a most common combined5

type that includes features from each of the other two types (American Psychiatric Association, 2000). The6

biology of ADHD, including its genetics (Faraone et al., 2005; Banaschewski et al., 2010) and neurobiology7

(Tripp and Wickens, 2009), has received considerable attention but remains relatively poorly understood8

(see e.g., Casey et al., 2007; Bush, 2010).9

Diagnosis. There is no single, standard test for ADHD in children, and thus diagnosis requires the10

extended involvement of mental health professionals to accurately assess the existence and range of behavioral11

evidence and to differentiate ADHD from other disorders with overlapping symptomatology or from typically12

occurring behaviors. This process is costly and time-consuming. The use of non-invasive brain imaging13

methods coupled with advanced image analytics techniques holds the promise of great benefit for expediting14

or adding certainty to this diagnostic process. While this hope exists for essentially all neuropsychiatric15

disorders which rely on behavioral evidence for diagnosis, algorithms for objective classification of patients16

may hold special value in ADHD due to its heterogeneity, high prevalence, and particularly controversial17

diagnosis (Wolraich, 1999).18

Gender and IQ differences. A number of demographic factors appear to be related to positive diag-19

nosis of ADHD and may be useful in informing diagnostic algorithms. ADHD is diagnosed at a significantly20

higher rate in boys than in girls (Polanczyk et al., 2007). In 2007 in the United States, based on parent21

reports of any ADHD diagnosis in children ages 4-17, ADHD had been diagnosed in 13.2% of boys compared22

with 5.6% of girls1. Further, multiple studies have reported gender differences in the symptom profiles of23

children with ADHD (Gaub and Carlson, 1997; Newcorn et al., 2001; Gershon and Gershon, 2002), sug-24

gesting possible sex-specific mechanisms or manifestations of the pathophysiology of the disorder. Cognitive25

measures including Full Scale IQ as well as Verbal and Performance IQ are also reliably different between26

individuals with ADHD and typically developing controls (TDCs) (Frazier et al., 2004).27

Neuroimaging correlates of ADHD. Family and twin studies of ADHD have established high degrees28

of heritability (Faraone et al., 2005; Burt, 2009), supporting the existence of a biological and genetic basis for29

the disorder. Brain imaging may then be viewed as a method for providing quantitative or semi-quantitative30

endophenotypes (Doyle et al., 2005), measures which are theoretically more closely related to the underlying31

biological etiology than are the behavioral signs and symptoms. To this end, a wide range of anatomical and32

functional brain imaging studies have been conducted comparing children with ADHD to typically developing33

children, and have described a number of relatively consistent results (Giedd et al., 2001; Durston, 2003;34

Bush, 2010). These range from gross findings that total cerebral volume may be reduced by ∼ 3−4% (Valera35

et al., 2007) and that global cerebral glucose metabolism is substantially reduced (Zametkin et al., 1990),36

to results demonstrating reduced cortical thickness in the right superior frontal gyrus across the lifespan37

(Almeida et al., 2010), and numerous reports of altered anatomical or functional connectivity (Konrad and38

Eickhoff, 2010; Liston et al., 2011) in individuals with ADHD relative to controls. The breadth of the39

available functional and structural imaging studies, which are too numerous to review here, have generally40

implicated prefrontal cortex (including dorsolateral and ventrolateral prefrontal areas), anterior cingulate41

cortex, parietal cortex, striatum, and cerebellum.42

Despite the promise of brain imaging for aiding clinical diagnosis, currently no imaging techniques are43

recommended for this purpose (Bush, 2010). One possible explanation for this unfulfilled promise could be44

that the measures necessary for accurate diagnosis may be high-dimensional and not readily observable from45

1http://www.cdc.gov/ncbddd/adhd/data.html



PREDICTION OF ADHD DIAGNOSIS 3

classical univariate image analysis methods. Further, studies conducted in small samples may not sufficiently1

generalize to larger populations.2

Complex brain networks. It is long established that alterations in inter-regional neuronal connectivity,3

as in the case of so-called disconnection syndromes, can underlie complex brain disorders (Geschwind, 1965).4

Recent theories of the basis for neuropsychiatric disorders have reinvigorated these conceptualizations (e.g.,5

Mega and Cummings, 1994; Tekin and Cummings, 2002; Geschwind and Levitt, 2007). Concomitant with6

such theories, advances in brain imaging and data analytic methods (as well as the rise of the more general7

domain of systems biology), have enabled the generation and quantitative analysis of complex brain networks8

built from structural and/or functional imaging data (Bullmore and Sporns, 2009). Such networks, including9

those constructed based on resting state fMRI (rs-fMRI), are now commonly used in the study of normal10

and abnormal cognitive function.11

Resting-state fMRI, based on low-frequency BOLD signal fluctuations that occur while the subject is12

resting and performing no explicit task, has garnered significant recent interest as a tool for finding clinically13

relevant biomarkers and/or for measuring responses to treatment (Greicius, 2008). Networks built from14

correlations or related measures calculated across instances of functional imaging time series obtained during15

rest may be interpreted, at least partly, to reflect the intrinsic functional connectivity between different16

brain areas, and their properties may be relevant for understanding typical and atypical variability across17

the population. A number of studies have provided sparse evidence for altered connectivity in ADHD, but18

much further work is necessary to fully characterize network phenotypes as well as intersubject variability19

(Castellanos et al., 2009).20

Currently a large number of methods exist for the construction of functional connectivity networks.21

Simulation studies performed by Smith et al. (2011) have demonstrated direct evidence that not all methods22

are equivalent in their ability to estimate the existence of underlying inter-regional connections. Thus the23

potential for discovering network-based measures that correlate with the presence or absence of ADHD may24

hinge on the methods used to define each individual network’s elements, including nodes, presence / absence25

of edges between node pairs, and any weights assigned to those edges.26

Network analytics. The structure of a system (physical or biological) is an abstract concept that can27

be difficult to quantify in a manner that can be used to predict its characteristics or to distinguish between28

different types of systems. However, by representing the structure of a system with a network model it29

becomes possible to quantify various measurements of the network that may be used to characterize the30

system. For example, a series of network measures has been used to determine whether the configuration of31

a network of cells derived from histological section images can predict the presence of cancer (Gunduz et al.,32

2004; Demir et al., 2005; Khurd et al., 2011; Chekkoury et al., 2012). Historically, these network measures33

have been widely used in chemical graph theory for a very long time (e.g., Wiener, 1947) to predict various34

structural and behavioral properties of molecules (for reviews of this type of usage see Hansen and Jurs,35

1988; Mihalić and Trinajstić, 1992; Bonchev and Rouvray, 1991). More recently, a wide variety of measures36

have been explored and used for the structural quantification of systems spanning scientific disciplines (see37

Costa et al., 2007). Furthermore, network-level properties such as graph efficiency (Latora and Marchiori,38

2001) have already been demonstrated to be useful markers of ADHD (Wang et al., 2009).39

ADHD CHALLENGE40

In this paper we describe our efforts to use attributes derived from MR images as well as non-imaging41

phenotypic measures to predict the presence or absence of an ADHD diagnosis in child and adolescent42

subjects. This opportunity was made possible by the availability of a large dataset comprising structural43
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and resting-state functional MRI scans and associated non-imaging phenotypic data (e.g., gender, age,1

cognitive testing measures) from 776 children and young adults. These data were provided by the ADHD-2

200 Consortium, a “self-organized, grassroots initiative, dedicated to accelerating the scientific community’s3

understanding of the neural basis of ADHD through the implementation of discovery-based science” as part of4

the ADHD-200 Global Competition2. This competition invited researchers from all disciplines to participate5

in an effort to produce the highest performance imaging-based diagnostic classification algorithm for ADHD.6

Scoring was based on a pre-specified point system that involved both base diagnosis and diagnosis of ADHD7

subtype. A separate award was provided for the most innovative neuroscientific examination of ADHD. Our8

group finished fifth overall in the classification competition, and the present paper describes our approach9

and continued efforts to improve and characterize classification methods and results.10

The open availability of large N datasets with compatible, commonly coded primary data and metadata is11

critical to successfully fulfilling the promise of exploratory and machine learning approaches for the discovery12

of principles of normal and disordered brain function (Biswal et al., 2010; Milham, 2012). The ADHD-13

200 sample represents a starting point for this approach in ADHD research and presents a test bed for14

utilizing large sets of anatomical, network, and non-imaging measures for objective diagnosis of complex15

neurobehavioral disorders that currently require extensive, continued behavioral testing for diagnosis and16

lack clear biomarkers.17

APPROACH18

We approached the diagnosis problem by examining the predictive power of three sets of features or attributes:19

(i) non-imaging phenotypic features, (ii) anatomical features derived from structural brain images, and (iii)20

network features derived from graphs depicting functional connectivity during rs-fMRI. A set of over 12,00021

features was computed for each individual subject; these features were provided, in the groups described22

above, to train classifiers. These classifiers were evaluated using a cross-validation approach, and then used23

to predict the presence or absence of ADHD in a separate group of test subjects.24

Prediction using the non-imaging phenotypic features (e.g., age, gender, IQ) provides a baseline perfor-25

mance level which, in the current dataset, is well above chance. We anticipated that the addition of certain26

anatomical and network features would add predictive power, increasing overall performance of the classi-27

fiers. Based on previously observed gender differences, we also anticipated that separate classifiers may be28

needed to maximize predictive power for boys vs. girls. Below we describe the overall results of classification29

using this approach and discuss the power of the different classes of features.30

METHODS31

ADHD-200 DATASET32

Anatomical and resting state functional MRI scans were performed at 8 different facilities on children and33

young adults ages 7 to 21 years (mean: ∼12 years), approximately half (∼53%) male. Participants were34

diagnosed as either typically developing or ADHD-Hyperactive, ADHD-Inattentive, or ADHD-combined35

type. These data and various metadata describing subject phenotypic traits (including diagnosis) were made36

available to download through the ADHD-200 Consortium. Too few cases of ADHD-Hyperactive type were37

available for any practical analysis and, in general, the other two subtypes are not distinguished in our analysis38

below except to assess subtype-specific performance. In other words, we describe classifiers built to determine39

2http://fcon 1000.projects.nitrc.org/indi/adhd200/
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the presence or absence of ADHD irrespective of subtype, but we were able to analyze post hoc whether1

their performance differed depending on the subtype. While the ADHD Global Competition included scoring2

based on subtype diagnosis, and while being able to differentiate subgroups within a diagnostic category is3

of high potential clinical value, we chose to focus efforts here on the problem of primary diagnosis, applying4

a large and diverse feature set, combined with gender-stratified training that limited the number of training5

examples that would be available for each individual subtype.6

Imaging parameters (i.e., repetition time, number of volumes acquired, other MR acquisition parameters)7

differed somewhat across sites3, and some subjects were imaged more than once. For subjects with multiple8

rs-fMRI sessions, time series were concatenated after pre-processing.9

Non-imaging phenotypic attributes that were included in the dataset and used in the classifiers included:10

1. Age11

2. Gender12

3. Handedness13

4. Verbal IQ14

5. Performance IQ15

OVERALL MACHINE LEARNING FRAMEWORK16

Our approach to diagnosing Attention-Deficit/Hyperactivity Disorder combined the use of anatomical mark-17

ers, non-imaging phenotypic data (above), and network analytics computed from graphs constructed from18

each individual’s resting state fMRI data. We calculated a variety of standard and new quantitative markers19

and applied machine learning algorithms to perform the ADHD classification.20

The anatomical and network features (described below) were normalized to have zero mean and unit21

standard deviation across all subjects in the dataset. Any features with constant values (across subjects)22

were excluded at this stage. The non-imaging phenotypic features were used without any normalization,23

and missing values of Verbal or Performance IQ were replaced by the respective population average. We24

augmented these with several binary features: NoIQ (1 if the subject was missing IQ scores, 0 otherwise)25

and Site1 through Site8 (1 if the subject was imaged at that site, 0 otherwise).26

We performed a two-fold cross-validation procedure over the released training data. Examples (subjects)27

were sorted by site, classification label (i.e., diagnosis), gender, and age, and were assigned in round-robin28

fashion to folds 1 and 2; this was done to ensure that each fold contained equal proportions of examples with29

similar values for those attributes. Next the dataset was separated by gender (474 boys and 280 girls were30

available in the final training data), and all the steps described below were performed separately for the two31

resulting datasets, with results combined at the end. The assessments of overall diagnostic performance were32

made after pooling all individual classification results across the gender groups (i.e., treating the outputs as33

if they had come from a single classifier).34

We used three methods to rank features (Guyon, 2003), and used the resulting rankings to select between35

5 and 6000 (or all in the cases where more than 6000 features were available) features using each method,36

with the selection procedures performed inside the training data of each cross-validation fold. Two filter37

3The individual parameters for each site are available at the competition web site:
http://fcon 1000.projects.nitrc.org/indi/adhd200/.
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methods were used to score each feature individually: (i) a 2-sample t-test (comparing the feature values1

for ADHD participants vs. controls) and (ii) the accuracy of a classifier trained and tested in nested cross-2

validation over that single feature. We also applied a wrapper method, recursive feature elimination, which3

also made use of nested cross-validation. This method consisted of training a linear support vector machine4

classifier on all available features, then scoring features by the magnitude of the weights assigned to them.5

The bottom 50% features were then eliminated from consideration and the procedure repeated until there6

were 10 or fewer features. Final feature scores were a combination of the last round in which each feature7

survived and, within that, the magnitude of the weight assigned by the classifier, such that the last surviving8

features had the higher scores.9

The three feature selection methods were parallel equivalents of one another (i.e., one replaces the other,10

each resulting in a ranking of the overall feature set). Because features were ranked using each of the above11

methods throughout a cross-validation process, we computed the average rank of each feature (across folds)12

for each method. These average rankings were then used for selecting the features used to train classifiers13

using examples from the entire training dataset. Specifically, we chose the top K ranked features for a14

variety of values of K. Performance was then assessed using the separate test set released by the ADHD-15

Consortium, which was not used for either training or feature selection. A linear SVM classifier (LIBSVM16

Chang and Lin, 2011) with regularization parameter λ = 1 was used as the classification algorithm with all17

sets of selected features; other classification algorithms were tested in prelimninary studies, but provided18

similar or inferior overall performance.19

Evaluating classification performance. Comparing the value of different classifiers requires a mea-20

sure capable of representing the utility of one classifier over another. One natural measure is the accuracy21

which quantifies the probability that the classifier will make a correct prediction of ADHD vs. TDC. How-22

ever, under differing practical scenarios, it may be more important to be confident that the classifier provides23

a correct diagnosis of ADHD positive (high true positive rate) or that the classifier provides confidence in24

ruling out an ADHD positive diagnosis (low false positive rate). A mechanism for characterizing the value of25

a classifier under such different scenarios is the Receiver Operating Characteristic (ROC) curve, which plots26

the probability of predicting a true ADHD positive given a tolerance for a certain percentage of false ADHD27

positive results. Consequently the area under the ROC curve (AUC) can be used to measure the value of28

one classifier compared to another, regardless of the practical scenario. An AUC of 1.0 indicates a perfect29

classifier (i.e., a true positive is always obtained without sacrificing any false positives) while an AUC of 0.530

indicates that the classifier does no better than chance in predicting the presence / absence of ADHD. In31

the present study, all results are reported using this measure and are provided for the cross-validation stage32

(on the non-training folds) as well as for the separate test stage.33

In order to compute the ROC curve for a classifier, we ranked the examples by the magnitude of the34

LIBSVM decision value output for each. This was obtained for each example by multiplying the weight35

assigned to each feature by the value it took in that example and adding over features. We then computed36

the true positive and false positive rates obtained when setting the classification threshold at each point in37

the ranking. For the set of results using all feature types, we also provide accuracy scores (which represent38

one point on the ROC curve that maximizes the overall percent correct in binary diagnosis).39

ANATOMICAL FEATURES40

All structural MRI scans (T1-weighted MPRAGE volumes, anonymized using a “defacing” algorithm to41

protect patient confidentiality) were processed through the FreeSurfer software package4, version 5.0.0 using42

the typical “recon-all” procedures. Specifically, this software was used to perform intensity normalization,43

4http://surfer.nmr.mgh.harvard.edu
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Figure 1: Schematic describing the overall pipeline through which data were processed and submitted to
machine learning algorithms for classification. Note that anatomical and functional / network streams were
largely independent.
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skull stripping, white matter segmentation, and tesselation and reconstruction of the cortical surface in1

each hemisphere. In addition, individual surfaces were registered to a spherical atlas space, and the cortex2

was parcellated into macroanatomical regions. Furthermore, from the T1 volumes, a set of subcortical3

structures were segmented, and a variety of morphometric measures were estimated. Technical details of4

these procedures are described elsewhere (Dale et al., 1999; Fischl et al., 1999a,b). The quality of MR5

images, Talairach registration, pial surface demarcation, and surface inflation were assessed using a manual6

inspection protocol. Approximately two percent (14 of 776) of the images failed this stage of quality assurance7

and were removed from the subsequent analyses. Cortical surface-based features (thickness and curvature)8

were computed for each subject and resampled onto an icosahedral surface model defined in the atlas space.9

This surface consists of 2,562 locations (vertices) in each hemisphere, equally spaced around the inflated10

sphere. Based on initial experiments, we discarded average curvature features and focused on local thickness11

features as possible ADHD diagnostic aids. Thus, for each subject we calculated a total of 5,124 local cortical12

thickness features.13

Additionally, automated surface-based cortical parcellations and volume-based subcortical structure seg-14

mentations were computed for each subject (Fischl et al., 2002, 2004), and a series of statistics were calculated15

for the individual structures (average cortical thickness, surface area, volume, mean curvature, and standard16

deviations of these measures for each cortical region of interest). The volumes of various subcortical gray17

and white matter structures were also estimated, and normalized by each individual’s total intracranial18

volume (ICV) to help control for age effects. FreeSurfer also calculated the volumes of subcortical areas19

with hypointensities in gray or white matter; these were also normalized by ICV and included in the overall20

feature set.21

NETWORK FEATURES22

Preprocessing rs-fMRI data. Individual subject resting state functional connectivity networks were gen-23

erated (using three different network construction methods, see below) from preprocessed rs-fMRI time series24

data, and a large set of network measures were calculated from these networks. Functional MRI preprocess-25

ing relied on scripts provided publicly by the NeuroBureau5, specifically using the so-called Athena Pipeline.26

All raw rs-fMRI data were reprocessed using these scripts, adapted to our local computing environment,27

which used methods from the publicly available AFNI (Cox and Hyde, 1997) and FSL (Smith et al., 2004)28

software packages. This pipeline6 included steps for normalization of anatomical volumes to an age-specific29

(4.5-18.5 years) template brain volume in MNI space (Fonov et al., 2011) (contrast with surface based reg-30

istration in our Freesurfer-based anatomical pipeline) using a low-dimensional non-linear deformation, and31

realignment and co-registration of functional images to this space. The first 4 EPI volumes in each rs-fMRI32

scan were discarded due to T1-equilibration effects. Slice timing correction was performed, and the mean33

activation time courses from white matter (WM) and cerebrospinal fluid (CSF) as well as estimated motion34

parameters and a set of low-order polynomials were used as nuisance regressors. Resulting voxel-wise time35

courses were band pass filtered (0.009 Hz < f < 0.08 Hz) according to common practice in rs-fMRI analysis36

(Cordes et al., 2001). Region-specific average time courses were extracted from each subject’s data using37

the Automated Anatomical Labeling (AAL) template atlas (Tzourio-Mazoyer et al., 2002), which consists38

of 116 brain regions-of-interest (ROIs) demarcated in MNI-space based on sulcal and gyral landmarks in the39

MNI single-subject template atlas.40

Network construction. Several different methods have been proposed for inferring functional connec-41

tivity from a resting state time series acquisition. Smith et al. (2011) used simulation studies to test a wide42

variety of methods for inferring connections from fMRI time series; following these results, we deployed three43

5http://neurobureau.projects.nitrc.org/ADHD200/Data.html
6For details of the Athena pipeline see http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
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of the best-performing methods for estimating weighted networks from the AAL time course data above:1

1. Correlation, with correction for temporal autocorrelation (Corr)2

2. Sparse regularized Inverse Covariance (SIC )3

3. Patel’s Kappa (Kappa)4

Corr networks were based on calculations of Pearson correlation coefficients between the average time5

series for pairs of AAL regions. These were then converted into P-values under the null hypothesis of6

no correlation using a Fisher transformation, and taking into account temporal autocorrelation. False-7

discovery rate (Benjamini and Hochberg, 1995) was used to correct for multiple comparisons at a rate of8

0.01. Edges representing significant correlation between nodes (AAL regions) were assigned weights equal9

to the corresponding pairwise correlation coefficient; edges for which the corrected correlations were not10

significant were set to zero.11

The SIC networks were created using methods from the Sparse Learning with Efficient Projections12

(SLEP) toolbox (Liu et al., 2009). In particular, the inverse of the AAL time series covariance matrix was13

computed under an L1-norm regularization penalty (see also Friedman et al., 2008; Huang et al., 2010),14

yielding a measure of partial correlation. Based on Smith et al. (2011) and exploratory testing, we chose a15

regularization parameter of λ = 0.1 in all cases. L1-regularization enforces sparsity in the inverse estimate,16

and thus these networks contained many edges with weight values that were close to zero. Nonzero edge17

weights were real valued, between 0 and 1.18

Kappa networks were computed based on the κ measure described in Patel et al. (2006), extended to19

continuous (non-binary) measurements as described in Smith et al. (2011). This is a measure of connection20

strength based on conditional states of pairs of normalized time series. Kappa networks had continuous-21

valued edge weights and were not subjected to an edge threshold.22

In definitions below we refer to a graph G = {V,E} consisting of a set of vertices (or nodes) V , and edges23

E. We denote an individual ith vertex as vi ∈ V and an edge spanning vertex vi and vj as eij ∈ E. We24

denote the weight assigned to edge eij as wij . In all cases, inferred edges were weighted using real-values25

(i.e., they were not binarized, as is common in the literature). The absolute values of edge weights were26

used to calculate network measures. These edge weights computed in our network construction methods are27

affinity weights, which are larger if two nodes are more strongly connected. Therefore, in order to compute28

meaningful measures based on paths, it was important to convert the edge weights to distance weights, which29

are small if nodes are similar. The appropriate relationship between affinity and distance weights was given30

in Grady and Polimeni (2010) as:31

wdistance =
1

waffinity
, (1)

which is the same relationship between resistance (distance) and conductance (affinity) in an electrical circuit;32

see Grady and Polimeni (2010) for more discussion of this point. In the following sections, we will specify33

whether the affinity or distance weights were used to compute each measure. All networks were undirected34

(wij = wji) and contained 116 nodes (corresponding to the regions of the AAL atlas) and 6,670 possible35

edge weights.36

We subjected each network to a wide range of feature analysis in order to capture specific markers which37

might aid in predicting the presence / absence of ADHD. We examined a large number of standard measures38
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from the resting state network literature (see e.g., Sporns, 2010). However, since it was unclear which network1

characterizations might provide insight into ADHD, we broadened the range of network features considered2

to include features derived from the literature outside of neuroscience, such as those reviewed in Costa et al.3

(2007) and Grady and Polimeni (2010). Specifically, in addition to examining the standard “scale-free” and4

“small-world” properties of the networks, we also looked for measures that quantify network connectivity5

(both single path and parallel path), network separability, network cycle structure and the recurrence of6

certain network motifs.7

Standard network measures.8

We calculated measures of graph connectivity that are derived from the literature on “scale-free” and9

“small-world” networks. To characterize small-world properties, we computed the average path length,10

diameter, radius, and mean/max/min clustering coefficients for each network (Grady and Polimeni, 2010).11

These measures would help us distinguish if the functional connectivity network of ADHD subjects more12

strongly resembled a small-world network (as first described in Watts and Strogatz, 1998). It has been13

suggested in the literature to also examine the related measures of global efficiency and the harmonic mean14

of the path lengths (Latora and Marchiori, 2001), which we have also included in our study.15

Similarly, to examine the scale-free properties of the network, we computed the entropy of the degree16

structure and the assortativity (Newman, 2002). These computations could reveal if the functional con-17

nectivity networks of ADHD patients were more or less scale-free than typically developing controls. Since18

scale-free networks (in which the node degree distribution approximately follows a power law) are modeled19

through a process of preferential node attachment, a difference in the scale-free properties could suggest an20

underlying difference in the process of network / circuit formation for ADHD patients.21

We also examined several conventional measures that were computed for each node. These features22

would reveal if the role of a particular node within the overall network were different for ADHD subjects.23

Specifically, for each node we computed its degree, betweenness, eccentricity and central point dominance,24

providing a set of measures of how the node is situated in the overall network (Grady and Polimeni, 2010).25

The weighted degree of a node (region) can be interpreted as a measure of its overall functional connectivity26

with the rest of the brain, while betweenness has a possible interpretation as indicating the “importance” of27

a region in the overall flow of information. These per-node features were also condensed into a small set of28

measures characterizing the overall network such as mean/max/min degree, mean/max/min betweenness,29

and the entropy of the betweenness values. For the novice reader, a brief introduction to a set of network30

measures is provided in the Supplementary Materials.31

All of these measures depend on shortest paths and were therefore computed using distance edge weights.32

Since the clustering coefficient measures are typically defined for unweighted graphs, we computed these33

coefficients by treating a connection between nodes of any weight as a connection (effectively setting all edge34

weights to unity).35

Parallel connectivity measures. One criticism of the conventional measures described above is that36

they generally rely on measuring shortest paths between pairs of nodes in the network. However, information37

which spreads through multiple channels (such as a diffusion process) is more sensitive to the collection of38

strong parallel paths connecting a pair of nodes rather than the presence or absence of a strong single path39

connecting the pair. One way of measuring parallel paths is through the concept of effective resistance,40

which treats the network as a linear resistive circuit (Klein and Randić, 1993). Note that it is important to41

treat all edge weights as affinity weights in an electrical circuit interpretation (Grady and Polimeni, 2010).42

To quantify the strength of parallel connections between each node and the rest of the network, we43

calculated the eccentricities of each node with respect to the resistance distance instead of the conventional44
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shortest-path distance. These per-node eccentricities can also be used to quantify the overall parallel con-1

nectivity of the network via the radius and diameter of the effective resistance as well as the Kirchhoff Index2

used in chemical graph theory (Bonchev et al., 1994; Diudea and Gutman, 1998).3

Network separability. Some networks have one strongly interconnected component while others have4

multiple different functional clusters. The separability (or modularity) of a network is not easily characterized5

by the previous measures which depend on examining strong paths between node pairs. To quantify the6

separability of a network, we computed two classical measures. Specifically, we calculated the Fiedler values7

of the unnormalized and normalized Laplacian matrix. The unnormalized Laplacian matrix is defined as8

L = D − W where W is the weighted adjacency matrix (with affinity edge weights) and D is a diagonal9

matrix of weighted node degrees such that Dii =
∑

i Wi. The normalized Laplacian matrix is defined as10

L = D−1L. The Fiedler values are the second-smallest eigenvalues of these matrices, which are known11

to reflect the separability of the graph into two pieces (Fiedler originally termed this value the algebraic12

connectivity to reflect this property; Fiedler, 1973). We also computed the third-smallest eigenvalue of these13

matrices as a feature, since this value reflects the separability of the network into three components.14

A feature that describes separability of the graph is its isoperimetric number (Mohar, 1989), which15

describes the smallest ratio of16

ι(S) =
cut(S, S)

|S|
, (2)

for any node subset S ⊂ V such that 0 < |S| ≤ 1

2
|V |, where17

cut(A,B) =
∑

eij , s.t.vi∈A,vj∈B

wij . (3)

Similarly, a normalized isoperimetric number of a network is also defined as the minimum ratio18

ι(S) =
cut(S, S)

Vol(S)
, (4)

for any node subset S ⊂ V such that 0 < Vol(S) ≤ 1

2
Vol(V ) where Vol(S) =

∑
vi∈S di. Unfortunately,19

calculation of either isoperimetric number for a graph is NP-Hard (Mohar, 1989). Therefore, we performed20

an estimation of the isoperimetric number using different clustering methods to find good candidate sets S21

and taking as features the values of ι(S) and ι(S) that are smallest over all clustering methods. Specifically,22

we applied the spectral clustering and isoperimetric clustering algorithms (Grady and Schwartz, 2006) to23

estimate the isoperimetric number. Note that if the network is disconnected, the Fiedler values and isoperi-24

metric numbers will all be zero. However, in our experiments with these data and set of network construction25

methods it was uncommon to find disconnected networks.26

Other measures of modularity have been explored in the literature (e.g., the Q measure; Rubinov and27

Sporns, 2011) that characterize the goodness of a particular node partitioning in a network. However, these28

measures are dependent on the partitioning algorithm and, since these networks were generally quite dense,29

greedy algorithms (e.g., Newman, 2004) are unlikely to provide meaningful results. Due to the dependence30

on partitioning algorithm, these measures were not included as features in our study.31

Cycle measures. The most common way to quantify network structure is from the standpoint of32

connectivity between various node pairs. Although these connectivity measures give an indication of the33
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ability to pass signals between nodes, they fail to characterize the structure of feedback loops in the network.1

In fact, the cycles of complex networks have recently been shown to contain substantial information about2

certain types of networks (Khurd et al., 2011). Consequently, we followed Khurd et al. (2011) to produce3

a set of features characterizing the cyclic structure of these networks based on computing a minimum cycle4

basis for each network (Horton, 1987; Kavitha et al., 2008). All cycle lenghts were computed using distance5

edge weights.6

Most cycles in the minimal cycle basis are triangles (i.e. only three nodes and edges). Our quantification7

of the cycle structure was done by calculating the percentage of non-triangle cycles, their mean/max length8

and the sum of all cycle lengths.9

Sparsity measures. Network sparsity gives some indication of the overall synchronization of the network10

and the overall energy expended by the network. A natural measure of sparsity is to count the number of11

nonzero edges in a network, but this measure assumes that all nodes are valid. Any connection between two12

ROIs, however, might potentially be subdivided into a string of smaller nodes. Similarly, any ROI might13

potentially be subdivided into a number of small, tightly coupled nodes. If this subdivision was accidentally14

made for one network but not for another, then by taking the number of nonzero edges as the sparsity15

measure, the subdivided network would appear more sparse (if it were a connection that was subdivided) or16

less sparse (if an ROI were subdivided) than the unsubdivided network.17

To build a measure that is robust to the subdivision problem, we examined a sparsity measurement18

derived from linear algebra. Specifically, let P be a permutation matrix representing a node ordering in19

the network. Then, the sparsity of the Cholesky factor for the matrix L̃ = PLPT may be compared to20

the sparsity of the original Laplacian matrix, L, to determine the amount of “fill-in” (new edges) created21

by the ordering. It has been shown (e.g., Grady and Polimeni, 2010) that Gaussian elimination of a node22

(row/column) in the Laplacian matrix creates a new reduced Laplacian matrix, representing a graph in23

which the eliminated node is removed, and a connection is created between all neighbors of the eliminated24

node. Consequently, if the removed node is part of a path then the two neighbors of the eliminated node are25

connected by a single edge in the reduced graph, causing no fill-in. Similarly, if the eliminated node is part26

of a fully connected clique, then no new edges are created in the reduced graph, since all of its neighbors27

were already connected. Therefore, we believe that by comparing the sparsity of the Laplacian matrix to28

the amount of fill-in created by the Cholesky decomposition of the reordered matrix, a measure of intrinsic29

sparsity may be obtained which is robust to subdivisions of connections into paths or ROIs into tightly30

connected clusters of many nodes.31

The intrinsic sparsity that we have defined is substantially dependent on the node ordering that defines32

the permutation matrix P . Unfortunately, finding an ordering that produces a minimum fill-in is known to be33

an NP-Hard problem (Papadimitriou, 1976). Consequently, the field of numerical linear algebra has produced34

several ordering strategies that are known to provide low fill-in for different types of matrices/networks, such35

as the Approximate Minimum Degree (AMD), Cuthill-McKee, and Dulmage-Mendelsohn orderings. To36

quantify intrinsic sparsity of the networks, we used as network features the sparsity of the original Laplacian37

matrix and the fill-in obtained by the above orderings, as well as the fill-in produced by the lexicographic38

ordering as a reference. Since the sparsity measurements look only at the structure of the network, rather39

than the edge weights, we computed these sparsity features for each network when the affinity weights were40

thresholded at the levels of {0, 0.1, 0.3, 0.5, 0.7, 0.9}.41

Network motifs. The previous features all examined structural properties of the networks in terms of42

paths between node pairs, node centrality, degree distribution, cycles, separability and sparsity. However,43

it may be possible that what distinguishes ADHD subjects from TDC subjects is the presence/absence of a44

particular circuit of connections in the brain. Unfortunately, measuring the presence of all possible circuits45
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in the network is combinatorically prohibitive, even for our networks of 116 nodes. For example, even the1

number of possible subgraphs of three nodes is ∼ 250, 000, which is far too many to meaningfully explore2

without an enormous test dataset. Consequently, we examined the more tractable set of the 6670 possible3

2-cliques (edges), using each affinity edge weight as a feature.4

FEATURE IMPACT5

For features of all types, feature impact weights were calculated after training the classifier on the complete6

training set (all folds). The linear SVM learns weights associated with each feature, and it is common to use7

the absolute value or squared value of these weights as measures of importance or impact in the classification8

problem. However, since features were normalized to have zero mean, it was important to consider the sign9

of feature values in assessing impact. Therefore we calculated feature impact for each class (ADHD vs.10

TDC) by multiplying the learned feature weight by the mean value of that feature within that class. The11

sign of the feature impact indicates whether those features were, on average, driving the classifier toward12

that class diagnosis (for positive impacts) or away from that diagnosis (negative impacts).13

RESULTS14

The results detailed below describe the predictive power of individual classes of features (non-imaging phe-15

notypic, anatomical, and network features) as well as the potential for improving predictions by combining16

different feature classes. By grouping features in this way, we are able to examine the promise for different17

avenues of diagnostic aids (e.g., structural features vs. functional network features, which necessitate ad-18

ditional MR scan time). We describe a series of classifiers for each grouping of features, which were built19

using the multiple feature selection methods described above, with different numbers of selected features.20

All results describe both performance in cross-validation (testing on the fold not used for training) and on21

the separate test set (training on all folds of the cross-validation / training set). In nearly all cases, classi-22

fiers were able to predict the presence / absence of ADHD in individual subjects from the test set at above23

chance levels as measured by the area under the ROC curve. Unless otherwise specified, results are based24

on a dataset consisting of 755 training examples, which is 21 fewer than the 776 provided in the original25

data. These datasets were excluded due to processing or quality assurance problems in either our anatomical26

stream (14 subjects) or our network stream (7 additional subjects).27

GENDER DIFFERENCES28

Figure 2 shows a summary scatter plot of most of the non-imaging phenotypic information available for29

subjects, plotted separately for males and females across all performance sites. These plots summarize age,30

IQ, handedness, and diagnosis. By inspection it was clear that the ratio of control subjects to ADHD subjects31

was different between genders, and that within each gender that ratio was non-uniform across ages. Based32

on these determinations, we decided to stratify the dataset, treating each gender as a separate classification33

problem. The results reported below, unless otherwise noted, used this approach, and results represent the34

total performance levels across the gender-specific classifiers.35
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Figure 2: Top: Scatter plot representing female subjects from all sites, their DX status, age, combined IQ
(average of the two available measures) and handedness. The x-axis corresponds to the subject age. Along the
y-axis, typically developing control subjects are plotted below the y = 0 line, and ADHD subjects above (i.e.,
|IQ| = IQ, with negative values simply denoting TDC subjects. The position along the y-axis corresponds to
the average IQ measure, with subjects whose records did not include IQ plotted around y = −25 and y = 25.
The marker for each subject corresponds to diagnosis status (dot is control, o is ADHD-combined type, x
is ADHD-hyperactive/impulsive, + is ADHD-inattentive), and its color to handedness (red is left-handed).
Coordinates are jittered slightly to improve visualization. Bottom: Same as the plot above, but for male
subjects.

PREDICTING ADHD FROM NON-IMAGING PHENOTYPIC FEATURES1

The non-imaging phenotypic feature set (age, gender, handedness, verbal and performance IQ, and binary2

site variables) provided substantial predictive power. Only 14 phenotypic features were available, and the3

results for predicting ADHD diagnosis using only these features (or subsets of these features) are described in4

Table 1. Performance according to the AUC measure is well above chance on the folds not used for training5

during cross-validation, even for 5 features, and reaches a level of AUC ≈ 0.81 (maximum possible value of6

1.0 for a perfect binary classifier) using all available phenotype features. Performance is similar for the three7

different feature selection methods. The AUC drops considerably, however, on the separate test set (when8

trained on the complete training set), with maximum values of ∼ 0.72 for each feature selection method.9

PREDICTING ADHD FROM ANATOMICAL FEATURES10

The anatomical feature set included cortical thicknesses at uniformly sampled locations in the spherical11

atlas space, average overall cortical thickness, and volumes of individual cortical and subcortical structures.12
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Table 1: Non-imaging phenotype features only. Results summarizing ADHD prediction using non-
imaging phenotypic features only. Entries indicate the area under the ROC curve (AUC) for classifiers built
using different feature selection methods (rows) and different numbers of features (columns). Top: Results
on leave-out folds during cross-validation. Bottom: Results on separate test set based on training across all
examples in the training / cross-validation set.

Cross-Validation 5 10 All (14)

2 sample t-test 0.70 0.78 0.81
Nested CV 0.72 0.76 0.81

Recursive FE 0.73 0.80 0.81

Test Set

2 sample t-test 0.71 0.71 0.72
Nested CV 0.70 0.70 0.72

Recursive FE 0.69 0.66 0.72

Using these features alone, classifier performance is again substantially above chance and comparable to1

the baseline performance established by using the non-imaging phenotype features only. These results are2

summarized in Table 2. Maximum performance on the cross-validation folds is achieved using the full feature3

set (N = 5081 anatomical features), with AUC ≈ 0.77, slightly lower than the maximum of ∼ 0.81 achieved in4

cross-validation for the non-imaging phenotype features. Performance again drops somewhat to AUC ≈ 0.745

on the separate test set. However, it should be noted that this value indicates slightly better generalization6

of these classifiers to new test subjects than is observed for classifiers based on the non-imaging phenotypic7

features only (see Table 1).8

Table 2: Anatomical features only. Results summarizing ADHD prediction using anatomical features
only. Entries indicate the area under the ROC curve (AUC) for classifiers built using different feature
selection methods (rows) and different numbers of features (columns). Top: Results on leave-out folds
during cross-validation. Bottom: Results on separate test set based on training across all examples in the
training / cross-validation set.

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 All (5081)

2 sample t-test 0.64 0.67 0.63 0.58 0.62 0.69 0.71 0.72 0.74 0.76 0.77 0.77
Nested CV 0.62 0.64 0.65 0.63 0.62 0.64 0.68 0.70 0.75 0.77 0.76 0.77

Recrusive FE 0.64 0.63 0.63 0.67 0.69 0.72 0.74 0.76 0.77 0.77 0.77 0.77

Test Set

2 sample t-test 0.74 0.76 0.73 0.69 0.61 0.61 0.68 0.70 0.70 0.72 0.74 0.74
Nested CV 0.67 0.70 0.74 0.67 0.59 0.70 0.71 0.70 0.71 0.71 0.73 0.74

Recursive FE 0.68 0.63 0.52 0.54 0.63 0.71 0.74 0.75 0.75 0.74 0.74 0.74

PREDICTING ADHD FROM NETWORK FEATURES9

As described above, three types of functional connectivity networks were constructed based on the filtered10

rs-fMRI time course data extracted from 116 brain regions in each subject. For each network (Corr, SIC, and11

Kappa; see Methods), the complete set of network features were computed and provided to feature selection12

and classification methods.13

Table 3 summarizes the predictive power of the extracted network features alone for each of the three14

network construction methods. By comparison with Tables 1 and 2 it is clear that network features do not,15

on their own, achieve the same predictive power that either non-imaging phenotype features or anatomical16
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features achieve.1

Table 3: Network features only. Results summarizing ADHD prediction using network features only, as
calculated from 3 different network construction methods. Entries indicate the area under the ROC curve
(AUC) for classifiers built using different network construction methods (major groupings), feature selection
methods (rows within each grouping), and different numbers of features (columns). Within each network
construction method, Top: Results on leave-out folds during cross-validation; Bottom: Results on separate
test set based on training across all examples in the training / cross-validation set.

CORR NETWORKS

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (7150)

2 sample t-test 0.64 0.66 0.64 0.58 0.57 0.60 0.63 0.65 0.65 0.66 0.66 0.67 0.67
Nested CV 0.64 0.63 0.60 0.58 0.56 0.56 0.62 0.64 0.63 0.65 0.66 0.67 0.67

Recursive FE 0.55 0.57 0.54 0.59 0.63 0.66 0.65 0.65 0.67 0.67 0.67 0.67 0.67

Test Set

2 sample t-test 0.72 0.68 0.67 0.60 0.53 0.53 0.57 0.62 0.66 0.69 0.70 0.67 0.67
Nested CV 0.64 0.64 0.68 0.65 0.59 0.50 0.60 0.62 0.65 0.70 0.71 0.68 0.67

Recursive FE 0.58 0.59 0.53 0.56 0.60 0.64 0.65 0.63 0.65 0.65 0.66 0.67 0.67

SIC NETWORKS

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (7345)

2 sample t-test 0.63 0.64 0.62 0.58 0.64 0.67 0.69 0.70 0.71 0.72 0.72 0.74 0.74
Nested CV 0.65 0.67 0.67 0.62 0.62 0.65 0.67 0.68 0.71 0.73 0.73 0.73 0.74

Recursive FE 0.65 0.64 0.64 0.70 0.71 0.72 0.74 0.74 0.73 0.73 0.74 0.74 0.74

Test Set

2 sample t-test 0.64 0.72 0.66 0.65 0.60 0.58 0.62 0.63 0.65 0.67 0.70 0.71 0.71
Nested CV 0.49 0.58 0.62 0.64 0.57 0.58 0.66 0.68 0.70 0.69 0.70 0.70 0.71

Recursive FE 0.66 0.67 0.61 0.61 0.66 0.71 0.71 0.72 0.71 0.71 0.72 0.71 0.71

KAPPA NETWORKS

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (7344)

2 sample t-test 0.66 0.64 0.61 0.61 0.60 0.61 0.61 0.62 0.62 0.63 0.64 0.66 0.66
Nested CV 0.59 0.60 0.62 0.61 0.60 0.61 0.60 0.62 0.62 0.65 0.64 0.64 0.66

Recursive FE 0.62 0.61 0.60 0.62 0.64 0.64 0.65 0.65 0.65 0.66 0.66 0.66 0.66

Test Set

2 sample t-test 0.63 0.63 0.63 0.60 0.57 0.56 0.56 0.54 0.56 0.59 0.59 0.61 0.61
Nested CV 0.60 0.60 0.56 0.56 0.59 0.59 0.55 0.57 0.59 0.60 0.60 0.61 0.61

Recursive FE 0.56 0.59 0.51 0.57 0.55 0.59 0.58 0.59 0.60 0.61 0.62 0.61 0.61

Features extracted from Sparse regularized Inverse Covariance (SIC) networks performed best overall,2

yielding a maximal AUC in cross-validation of ∼ 0.74 when using all network features, dropping to ∼ 0.713

when testing on the separate test set. Neither Correlation-based network features nor features derived from4

networks built from the Kappa statistic provided as much predictive power as the SIC networks, either5

in cross-validation or on the test set. Based on this result, only features derived from SIC networks were6

considered when combining feature sets as described below.7

PREDICTING ADHD FROM COMBINED FEATURE SETS8

The classification results obtained through using all of the available features from different combinations9

of feature sets are summarized in Figure 3, in which the x-axis is sorted by AUC on the test set. The10
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best performing classifier (all of which used stratification by gender, see Methods) used all features from1

all classes; in general combining feature types improved performance in cross-validation and particularly so2

on the test set. We note, however, that adding network features to the non-imaging phenotype features3

markedly reduced performance during cross-validation (0.81 vs. 0.76), but resulted in improved performance4

(0.74 vs. 0.72) on the separate test set when using all features from both classes. Indeed the difference5

between cross-validation performance and performance on the test set is largest when using the non-imaging6

phenotype features only. Tables 4 through 7 detail the results for the classifiers that used more than one7

feature set, for different numbers of features used, and for each of the three feature selection methods.8
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Figure 3: Summary of best performing classifiers using all features in the set or combination of sets below,
sorted by performance on the test set (dark bars). Light bars indicate performance on non-training folds
during cross-validation. A = Anatomical features, P = Non-imaging Phenotype features, and N = Network
features.

Table 4: Combined Non-imaging phenotype and anatomical features. Results summarizing ADHD
prediction using non-imaging phenotypic features combined with anatomical features (but not network fea-
tures). Entries indicate the area under the ROC curve (AUC) for classifiers built using different feature
selection methods (rows) and different numbers of features (columns). Top: Results on leave-out folds
during cross-validation. Bottom: Results on separate test set based on training across all examples in the
training / cross-validation set.

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 All (5095)

2 sample t-test 0.69 0.70 0.67 0.63 0.66 0.74 0.74 0.76 0.78 0.79 0.80 0.80
Nested CV 0.76 0.79 0.75 0.68 0.64 0.70 0.74 0.76 0.79 0.80 0.80 0.80

Recursive FE 0.60 0.61 0.56 0.63 0.73 0.77 0.78 0.79 0.80 0.80 0.80 0.80

Test Set

2 sample t-test 0.69 0.66 0.65 0.63 0.66 0.69 0.71 0.70 0.73 0.74 0.75 0.76
Nested CV 0.74 0.74 0.70 0.66 0.65 0.69 0.72 0.71 0.73 0.76 0.75 0.76

Recursive FE 0.60 0.61 0.62 0.63 0.68 0.71 0.73 0.75 0.75 0.76 0.76 0.76

Combining all three feature sets yields the overall best prediction performance with an AUC ≈ 0.78 on9

the test set (∼ 0.80 on leave-out folds in cross-validation). For these results, which are depicted in Table 7,10

we have also included classifier accuracy results. As noted above, these values are based on one point on the11

ROC curve, which optimizes total percent correct for the binary diagnosis. We see that overall accuracy is12

above chance, but – particularly on the test set – not at a level that would allow, at this stage, a confident13

binary diagnosis for all example subjects.14

Figures 4 and 5 provide visualizations of the feature impact weights for cortical thickness features, which15
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Table 5: Combined non-imaging phenotype and network features. Results summarizing ADHD
prediction using non-imaging phenotypic features combined with SIC network features (but not anatomical
features). Entries indicate the area under the ROC curve (AUC) for classifiers built using different feature
selection methods (rows) and different numbers of features (columns). Top: Results on leave-out folds during
cross-validation. Bottom: Results on separate test set based on training across all examples in the training
/ cross-validation set.

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (7359)

2 sample t-test 0.68 0.69 0.66 0.60 0.66 0.70 0.71 0.72 0.73 0.75 0.75 0.76 0.76
Nested CV 0.77 0.80 0.72 0.67 0.68 0.69 0.69 0.70 0.73 0.75 0.75 0.75 0.76

Recursive FE 0.63 0.62 0.59 0.64 0.72 0.74 0.75 0.75 0.75 0.76 0.76 0.76 0.76

Test Set

2 sample t-test 0.69 0.72 0.69 0.67 0.60 0.56 0.64 0.65 0.68 0.70 0.73 0.74 0.74
Nested CV 0.60 0.61 0.64 0.65 0.58 0.59 0.65 0.70 0.71 0.71 0.72 0.72 0.74

Recursive FE 0.67 0.67 0.61 0.63 0.72 0.73 0.72 0.74 0.76 0.75 0.75 0.74 0.74

Table 6: Combined anatomical and network features. Results summarizing ADHD prediction using
anatomical features combined with SIC network features (but not non-imaging phenotypic features). Entries
indicate the area under the ROC curve (AUC) for classifiers built using different feature selection methods
(rows) and different numbers of features (columns). Top: Results on leave-out folds during cross-validation.
Bottom: Results on separate test set based on training across all examples in the training / cross-validation
set.

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12426)

2 sample t-test 0.63 0.64 0.61 0.60 0.62 0.66 0.71 0.72 0.75 0.75 0.76 0.77 0.77
Nested CV 0.62 0.64 0.65 0.63 0.62 0.64 0.68 0.70 0.75 0.77 0.76 0.77 0.77

Recursive FE 0.65 0.65 0.65 0.69 0.72 0.73 0.76 0.76 0.76 0.77 0.77 0.77 0.77

Test Set

2 sample t-test 0.72 0.74 0.72 0.66 0.66 0.70 0.67 0.71 0.70 0.70 0.70 0.73 0.76
Nested CV 0.49 0.63 0.62 0.64 0.57 0.69 0.68 0.69 0.70 0.72 0.74 0.73 0.76

Recursive FE 0.74 0.73 0.69 0.67 0.69 0.70 0.72 0.72 0.76 0.75 0.77 0.77 0.76
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made up the majority of the anatomical feature set. These figures show the feature impacts for the ADHD-1

positive class; equivalent visualizations for the control class are available as Supplementary Materials. De-2

spite the strong predictive power observed in non-imaging phenotype features alone, we observed that the3

combination of anatomical and network features without inclusion of the non-imaging phenotype features4

yielded the second best performing classifier (tied with using anatomical and non-imaging phenotype features5

together) on new data, with an AUC ≈ 0.76 on the test set.6

Table 7: Combination of all feature classes. Results summarizing ADHD prediction using combination
of all feature types (non-imaging, anatomical, and network features extracted from SIC networks). Entries
indicate the area under the ROC curve (AUC) for classifiers built using different feature selection methods
(rows) and different numbers of features (columns). Top: Results on leave-out folds during cross-validation.
Bottom: Results on separate test set based on training across all examples in the training / cross-validation
set. The corresponding accuracy results are shown below.

AUC results

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12440)

2 sample t-test 0.65 0.66 0.64 0.62 0.65 0.69 0.75 0.75 0.77 0.78 0.79 0.79 0.80
Nested CV 0.77 0.79 0.75 0.68 0.64 0.70 0.74 0.76 0.79 0.80 0.80 0.80 0.80

Recursive FE 0.66 0.64 0.63 0.66 0.75 0.77 0.78 0.78 0.79 0.80 0.80 0.80 0.80

Test Set

2 sample t-test 0.72 0.74 0.76 0.70 0.66 0.73 0.70 0.73 0.71 0.72 0.72 0.76 0.78
Nested CV 0.60 0.66 0.64 0.63 0.62 0.69 0.67 0.69 0.71 0.74 0.75 0.76 0.78

Recursive FE 0.63 0.63 0.61 0.60 0.69 0.72 0.73 0.75 0.77 0.79 0.78 0.78 0.78

Accuracy results

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12440)

2 sample t-test 0.68 0.65 0.63 0.63 0.64 0.67 0.69 0.69 0.74 0.72 0.72 0.73 0.74
Nested CV 0.74 0.74 0.70 0.66 0.65 0.69 0.72 0.71 0.73 0.76 0.75 0.74 0.74

Recursive FE 0.66 0.63 0.65 0.66 0.70 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.74

Test Set

2 sample t-test 0.69 0.67 0.69 0.65 0.63 0.66 0.63 0.66 0.62 0.61 0.60 0.63 0.67
Nested CV 0.61 0.62 0.60 0.60 0.58 0.65 0.63 0.64 0.64 0.67 0.70 0.65 0.67

Recursive FE 0.62 0.62 0.62 0.64 0.64 0.64 0.67 0.65 0.66 0.68 0.68 0.68 0.67

STRATIFICATION7

In order to evaluate the importance of stratifying by gender (which was used throughout our approach),8

classification using features from all feature sets (non-imaging, anatomical, and network) was repeated9

without any stratification. These results are shown in Table 8. Here we observed a dropoff in performance10

in cross-validation, but particularly a relatively large dropoff in AUC on the test set (AUC ∼ 0.70 using11

all features) in comparison with results that used separate gender-specific classifiers. Figure 6 demonstrates12

that the improvement due to stratification is systematic, plotting AUC on the test set for a range of numbers13

of selected features, and showing that stratification improves performance for the large majority of cases.14

In addition Figure 6 plots the results obtained from randomly ranking features, then training classifiers15

(separately for boys and girls) using the top N features from the random list (in which rankings were held16

constant across folds). This plot is an average across 10 randomly generated rankings. The results show17

that our data-driven methods for selecting N features improve performance over simply choosing features18

at random (for all N), but interestingly, using gender-specific classifiers with randomly selected features19

outperforms “intelligent” feature selection without gender stratification when the number of features used20
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Figure 4: Classification feature impact weights for cortical thickness features in the classification of boys
with positive ADHD diagnosis. Darker blue values indicate higher impact weights.

ADHD Girls
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Figure 5: Classification feature impact weights for cortical thickness features in the classification of girls
with positive ADHD diagnosis. Darker blue values indicate higher impact weights.



PREDICTION OF ADHD DIAGNOSIS 21

is large.1

Table 8: Combination of all feature classes without gender stratification. Results summarizing
ADHD prediction using combination of all feature types (non-imaging, anatomical, and network features
extracted from SIC networks) without stratification by gender. Entries indicate the area under the ROC
curve (AUC) for classifiers built using different feature selection methods (rows) and different numbers of
features (columns). Top: Results on leave-out folds during cross-validation. Bottom: Results on separate
test set based on training across all examples in the training / cross-validation set.

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12440)

2 sample t-test 0.67 0.68 0.64 0.63 0.66 0.68 0.69 0.71 0.73 0.74 0.74 0.75 0.77
Nested CV 0.77 0.80 0.77 0.73 0.62 0.64 0.67 0.67 0.71 0.74 0.74 0.77 0.77

Recursive FE 0.63 0.64 0.65 0.67 0.68 0.71 0.73 0.73 0.75 0.76 0.76 0.77 0.77

Test Set

2 sample t-test 0.71 0.73 0.65 0.69 0.66 0.66 0.65 0.63 0.64 0.68 0.69 0.70 0.70
Nested CV 0.60 0.65 0.66 0.68 0.65 0.50 0.60 0.61 0.65 0.63 0.62 0.66 0.70

Recursive FE 0.64 0.63 0.61 0.60 0.60 0.66 0.68 0.69 0.71 0.69 0.70 0.70 0.70

Because stratifying by gender was quite powerful, we tested adding an additional level of stratification,2

by age. In this case, classifiers were constructed for three different age groups (the 0th-25th percentile, 25th-3

75th percentile, and 75th-100th percentile of age) within each gender, thus resulting in 6 total classifiers.4

The results of applying this method to the full set of features are given in Table 9. Cross-validation per-5

formance was qualitatively similar compared to stratification by gender alone, but performance on the test6

set was slightly improved, reaching AUC ≈ 0.80 when using all features (which was slightly better than the7

performance predicted in cross-validation – AUC ≈ 0.79).8

Table 9: Combination of all feature classes with stratification by gender and age. Results sum-
marizing ADHD prediction using combination of all feature types (non-imaging, anatomical, and network
features extracted from SIC networks) with stratification by gender and age. Entries indicate the area under
the ROC curve (AUC) for classifiers built using different feature selection methods (rows) and different
numbers of features (columns). Top: Results on leave-out folds during cross-validation. Bottom: Results on
separate test set based on training across all examples in the training / cross-validation set.

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12440)

2 sample t-test 0.63 0.64 0.61 0.66 0.68 0.72 0.75 0.75 0.77 0.77 0.78 0.78 0.79
Nested CV 0.75 0.77 0.68 0.63 0.67 0.72 0.75 0.77 0.79 0.80 0.80 0.79 0.79

Recursive FE 0.62 0.62 0.67 0.73 0.75 0.76 0.77 0.78 0.78 0.78 0.78 0.79 0.79

Test Set

2 sample t-test 0.72 0.71 0.67 0.68 0.67 0.66 0.71 0.73 0.76 0.77 0.79 0.79 0.80
Nested CV 0.67 0.65 0.67 0.62 0.67 0.69 0.70 0.72 0.75 0.76 0.77 0.78 0.80

Recursive FE 0.59 0.55 0.64 0.64 0.72 0.76 0.78 0.80 0.80 0.80 0.80 0.80 0.80

PREDICTION RESULTS BY SUBTYPE9

In the present study we did not focus on predicting ADHD subtypes. However, most patients in the provided10

dataset were categorized as either ADHD-Combined Type (DX 1) or ADHD-Inattentive Type (DX 3), and we11

were interested in the question of whether one of these subtypes was easier to distinguish from controls than12

the other. We thus calculated performance of the classifier using all available features (e.g., as presented in13

Table 7), over two different datasets, each containing all the controls and patients from one of the subtypes.14
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Figure 6: Comparison of AUC performance on the test set as a function of number of features used for classi-
fiers built from a combination of all feature classes, with (green line) and without (blue line) stratification by
gender. Each subplot represents results based on a different feature selection method. Also shown (red line,
same in all plots) is the result obtained when features are ranked randomly (separately for each stratum);
this result is averaged over classifiers built using 10 random feature rankings.

Figure 7 shows the results on the test set for each subtype, using each feature selection method, as a1

function of the number of features selected; each color is associated with one of the methods, with solid and2

dashed lines corresponding to ADHD-Combined and ADHD-Inattentive results, respectively. Regardless of3

the feature selection method used, AUC performance is almost always higher in the task of distinguishing4

ADHD-Combined from controls than it is for distinguishing ADHD-Inattentive from the same controls.5
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Figure 7: Comparison of AUC performance on test set as a function of number of features used for the
two predominant ADHD subtypes. DX1 is the ADHD-Combined subtype; DX3 is the ADHD-Inattentive
subtype.

SIGNIFICANCE OF CLASSIFICATION RESULTS1

The various sets of results are reported in the above tables without an explicit measure of statistical signifi-2

cance. There is no simple analytical model for the distribution of the AUC under the null hypothesis that the3

classifier is performing at chance, as there is for accuracy. One of the main goals of this paper is to contrast4

the results obtained using different feature types, and also the extent to which information is present across5

many features and, thus, we believe it is useful to report these results comprehensively. This poses a multiple6

comparisons problem, however, which is further complicated by the fact that the results obtained with each7

feature ranking method – a table row – are potentially correlated, since the top 20 features contain the top8

10, the top 50 contain the top 20, and so on. Given that we do want to report results comprehensively, the9

canonical solution of using cross-validation within the training set to determine a single number of features10

to use is not desirable.11

Perhaps the most elegant approach to test significance for an entire table of results would be to use12

permutation testing (Golland and Fischl, 2003). Unfortunately, given that each experimental run, using13

nested cross-validation for feature selection, is computationally expensive, it is impractical to run a sufficiently14

large number of permutations for each of the experimental conditions. Here we have opted to perform a15

smaller number (N = 100) of permutations of the results in Table 7 (which describes the best performing16

classifiers based on using all feature types), and we report the mean AUC and standard deviation of the17

estimate of the mean AUC in Table 10, as well as the analogous numbers for accuracy in Table 11. In each18

training set, the category labels used to select features and train a classifier were permuted, separately for19

each fold in the cross-validation case; in this manner, the balance of examples in each class was maintained,20

as was the stratification approach. It is important to note that we should expect permutation test accuracy21

results to be somewhat above 0.5 because there are unequal numbers of examples in each class.22

These results, in comparison with Table 7, demonstrate that our best performing classifiers are performing23

well above empirically defined chance levels. For example, the mean AUC and accuracy (ACC) scores for24

classifiers using all 12440 features under class label permutations is AUC = 0.602 ± 0.006 and ACC =25

0.626 ± 0.002 under cross-validation, compared to an observed values of AUC = 0.80 and ACC = 0.74 for26

the classifier trained with correct class labels. This large difference holds up in the test set as well, where the27

empirical chance values are AUC = 0.60± 0.01 and ACC = 0.582± 0.003 and the correctly trained classifier28
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Table 10: Permutation tests of Table 7 results (AUC). Results summarizing ADHD prediction using
combination of all feature types (non-imaging, anatomical, and network features extracted from SIC net-
works) with stratification by gender. Entries indicate the area under the ROC curve (AUC) for classifiers
built using different feature selection methods (rows) and different numbers of features (columns). Top:
Results on leave-out folds during cross-validation. Bottom: Results on separate test set based on training
across all examples in the training / cross-validation set.

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12440)

mean across 100 permutations

2 sample t-test 0.581 0.575 0.557 0.536 0.525 0.542 0.560 0.572 0.582 0.589 0.594 0.598 0.602
Nested CV 0.593 0.583 0.561 0.542 0.525 0.543 0.558 0.564 0.574 0.583 0.585 0.589 0.602

Recursive FE 0.565 0.552 0.530 0.563 0.583 0.593 0.598 0.598 0.600 0.601 0.601 0.602 0.602

standard deviation of mean across 100 permutations

2 sample t-test 0.005 0.004 0.003 0.003 0.003 0.003 0.004 0.004 0.005 0.005 0.005 0.005 0.006
Nested CV 0.006 0.005 0.004 0.003 0.003 0.003 0.004 0.004 0.004 0.005 0.005 0.005 0.006

Recursive FE 0.004 0.004 0.003 0.004 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006

Test Set 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12440)

mean across 100 permutations

2 sample t-test 0.566 0.580 0.565 0.549 0.527 0.529 0.544 0.554 0.562 0.569 0.579 0.586 0.600
Nested CV 0.563 0.553 0.549 0.534 0.522 0.529 0.543 0.554 0.564 0.577 0.587 0.592 0.600

Recursive FE 0.562 0.561 0.543 0.527 0.554 0.570 0.584 0.589 0.594 0.596 0.599 0.599 0.600

standard deviation of mean across 100 permutations

2 sample t-test 0.010 0.009 0.008 0.006 0.005 0.005 0.006 0.006 0.007 0.008 0.008 0.009 0.010
Nested CV 0.007 0.006 0.006 0.006 0.005 0.005 0.006 0.006 0.007 0.008 0.009 0.009 0.010

Recursive FE 0.008 0.008 0.007 0.006 0.007 0.008 0.009 0.009 0.009 0.010 0.010 0.010 0.010

Table 11: Permutation tests of Table 7 results (accuracy). Results summarizing ADHD prediction
using combination of all feature types (non-imaging, anatomical, and network features extracted from SIC
networks) with stratification by gender. Entries indicate the accuracy for classifiers built using different
feature selection methods (rows) and different numbers of features (columns). Top: Results on leave-out
folds during cross-validation. Bottom: Results on separate test set based on training across all examples in
the training / cross-validation set.

Cross-Validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12440)

mean across 100 permutations

2 sample t-test 0.630 0.620 0.573 0.564 0.575 0.591 0.606 0.613 0.617 0.620 0.621 0.622 0.626
Nested CV 0.626 0.623 0.583 0.565 0.577 0.595 0.605 0.610 0.616 0.621 0.621 0.621 0.626

Recursive FE 0.592 0.593 0.609 0.615 0.618 0.620 0.625 0.625 0.625 0.624 0.626 0.626 0.626

standard deviation of mean across 100 permutations

2 sample t-test 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Nested CV 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002

Recursive FE 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Test Set 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12440)

mean across 100 permutations

2 sample t-test 0.557 0.569 0.570 0.541 0.544 0.558 0.565 0.570 0.575 0.580 0.582 0.586 0.582
Nested CV 0.558 0.553 0.540 0.529 0.532 0.536 0.556 0.561 0.565 0.575 0.577 0.581 0.582

Recursive FE 0.557 0.555 0.562 0.568 0.575 0.584 0.583 0.582 0.579 0.580 0.581 0.582 0.582

standard deviation of mean across 100 permutations

2 sample t-test 0.002 0.003 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Nested CV 0.003 0.003 0.003 0.004 0.004 0.003 0.004 0.004 0.003 0.004 0.003 0.003 0.003

Recursive FE 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003
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values are AUC = 0.74 and ACC = 0.67.1

PREDICTION RESULTS BY SITE2

We examined the performance of the best classifier (with stratification by gender only, based on using all3

features from all feature classes) as a function of the site of performance of the imaging session. Here we4

used accuracy as the outcome measure, and separated the corresponding errors into false positives and false5

negatives. These results represent a single point from an ROC curve. Our goal was to show the variability6

in performance across sites and the types of errors made within each site. These results are depicted in7

Table 12 for both cross-validation and on the separate test set.8

Table 12: Results of best overall accuracy predictor by site for predictions based on the full set of combined
features.

Cross-Validation Site FP error FN error accuracy # Subjects

1 Peking University 0.07 0.18 0.75 189
3 Kennedy Krieger Institute 0.10 0.22 0.69 83
4 NeuroIMAGE Sample 0.10 0.27 0.62 48
5 New York University Child Study Center 0.14 0.18 0.68 213
6 Oregon Health & Science University 0.07 0.37 0.56 73
7 University of Pittsburgh 0.03 0.00 0.97 89
8 Washington University in St. Louis 0.02 0.00 0.98 59

Test Set Site FP error FN error accuracy # Subjects

1 Peking University 0.06 0.32 0.62 50
3 Kennedy Krieger Institute 0.00 0.18 0.82 11
4 NeuroIMAGE Sample 0.00 0.35 0.65 23
5 New York University Child Study Center 0.10 0.22 0.68 41
6 Oregon Health & Science University 0.09 0.18 0.74 34
7 University of Pittsburgh 0.11 0.44 0.44 9
8 Washington University in St. Louis N/A N/A N/A 0

DISCUSSION9

The above results demonstrate that it is possible to predict the diagnosis of Attention-Deficit/Hyperactivity10

Disorder within the set of available subjects to a level of certainty that is well above what would be expected11

by chance (naively AUC ≈0.5, but empirically evaluated under certain conditions as shown in Table 10)12

using many combinations of non-imaging phenotype features and/or MRI-based anatomical or resting-state13

functional network features. We took a systematic approach to testing the predictive power of each of the14

three main feature sets on their own (Tables 1-3) and then in combination (Tables 4-7). The results using15

all features from those sets are summarized in Figure 3. In general, the small set of non-imaging phenotypic16

features were able to provide a large fraction of the available predictive power. However, imaging features,17

when used in large numbers, were able to boost performance by improving generalization to a separate18

test set of subjects. Such anatomical and rs-fMRI network features were also able to provide very strong19

predictions on their own, while using only gender as a non-imaging basis for stratifying the classification20

problem.21

In this paper we measured prediction performance using the area under the ROC curve (AUC) rather than22

the simpler measure of accuracy (i.e., rate of correct classification) because accuracy can be a misleading23

measure under certain circumstances. In particular, when classes are unbalanced, as is often the case in24

clinical diagnostics (i.e., there will be many more control cases than disorder cases), high accuracy can be25
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achieved simply by biasing the classifier heavily toward the control class. ROC curves thus are an important1

approach for evaluating clinical tests (Zweig and Campbell, 1993) because they plot the true positive rate2

against the false positive rate, establishing the area under the ROC curve as a measure of discrimination3

between classes across the full operating range of the classifier. By comparison, the use of accuracy as the4

measure of performance in this two-class problem forces evaluation of the classifier at a particular threshold,5

above which one call is made, and below which the other is made. In a real-world clinical setting it may be6

useful to tune the classifier to highlight either sensitivity to detect true cases of ADHD at the expense of a7

higher false positive rate, or to increase specificity to reduce false positive rate at the expense of a higher8

false negative rate. Thus AUC provides a more general measure that is applicable in the current context.9

Still, because accuracy is a well-recognized and commonly reported performance measure, we have included10

such results in the case of classifiers built from all feature types (Table 7).11

STRATIFICATION BY GENDER12

Based on current knowledge of ADHD, there are compelling reasons to believe that diagnostic aids might13

perform better if tailored to boys separately from girls, and this is reflected in our results. First, ADHD is14

diagnosed at a significantly higher rate in boys than in girls (Polanczyk et al., 2007), and thus the overall15

probability of an ADHD-positive diagnosis – averaged across other factors – should be different between16

genders. Still, it is possible that the same features (and weightings of those features) are important in17

diagnosing ADHD in both genders, and that those features are simply present in different proportions18

between genders. If this were the case, then a single classifier trained using those features should perform19

equally well compared with gender-specific classifiers, but this was not the case. Tables 7 and 8 show20

results using all feature sets with and without stratification by gender. The performance is notably reduced,21

particularly in the test set, using a single classifier. Figure 6 demonstrates that this stratification effect is22

quite consistent for different numbers of selected features.23

These results are consistent with the literature suggesting neurobehavioral gender differences in individ-24

uals with ADHD that go beyond mere prevalence (Gaub and Carlson, 1997; Newcorn et al., 2001; Gershon25

and Gershon, 2002; Castellanos et al., 2001; Mahone and Wodka, 2008). In the present study, the gender-26

specific classifiers that combined all non-imaging phenotypic, anatomical, and network features weighted27

the available imaging features substantially differently. For the classifiers using the entire feature set, the28

Pearson correlation coefficient between the feature weight vector for boys and the feature weight vector for29

girls was r = 0.0757. Although small, this represented a significant correlation in this high dimensional space30

(p < 1 × 10−13). Qualitative comparison of the feature impact weights points to many differences (see Sup-31

plementary Materials for a full list of features and their impact weights for each class, with local attributes32

linked to anatomy through the AAL nomenclature (Tzourio-Mazoyer et al., 2002) for network features or33

the nomenclature of the Desikan et al. (2006) FreeSurfer parcellation system). To provide one such example,34

highly impactful features for boys with ADHD include a series of network edge weights connecting cortical35

and striatal structures (5 of the top 50 ranked features) whereas none of these features appear in the top 5036

for girls with ADHD.37

An additional level of stratification was tested for the classifiers that used all feature sets, in this case38

including sub-classifiers for age groups. These groups were defined by percentiles (0-25, 25-75, 75-100) within39

the age range spanned by the training set within each gender group. While this set of stratified classifiers40

yielded quantitatively the best overall performance (AUC ∼ 0.79 in both cross-validation and on the separate41

test set), we focused more here on gender-only stratification because further splitting of the dataset results in42

relatively small sample-size partitions, and we lack overall confidence that such results will continue to hold43

over new, larger datasets. Still, stratification by age is a sensible approach given sufficient data given the44
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considerable developmental changes that are occurring over the window of ages considered here, including1

the maturation of resting state functional connectivity networks in typically developing children (Fair et al.,2

2008).3

PHENOTYPIC FEATURES4

Non-imaging phenotype features included gender, age, handedness (which was coded as an integer – left /5

right / ambidextrous – for most sites, but as a decimal based on the Edinburgh Handedness Inventory for6

patients scanned at NYU) and performance and verbal IQ (which were missing for some patients and were7

thus replaced with the population mean value when training). In addition, binary features were created to8

indicate the absence of an IQ score as well as eight features to indicate at which of the eight possible sites9

the scan data were obtained.10

These features had substantial predictive power and provided a high baseline for image feature-based11

classifiers to surpass. The maximal performance using these non-imaging attributes only was achieved using12

all 14 available phenotypic features (both in cross-validation and on the separate test set), but performance13

dropped off substantially from the 0.81 AUC obtained in cross-validation to 0.72 on the separate test set.14

This reduction in performance may indicate that the distributions of these phenotypic features in the test set15

did not sufficiently mirror those found in the training set. Overall, the population of patients and typically16

developing controls for whom data were made available were not necessarily representative of the population17

at large. For example, ∼ 36% of training samples had an ADHD-positive diagnosis, and the male-to-female18

ratio within that sample was not reflective of overall diagnosis rates. While the dataset used here was19

large relative to many single studies of ADHD, the numbers are still potentially too small given the overall20

population variance in measures like IQ to enable completely effective prediction based on this small set of21

features.22

IMAGING FEATURES23

A large number of features were calculated based on each patient’s imaging data. These measures were24

subdivided into anatomical features, which were processed in one stream, and network features, which were25

processed in another (see Figure 1).26

Anatomical features. The anatomical feature set was dominated by estimates of cortical thickness27

at 2,562 locations per hemisphere, a small fraction of which were excluded because they represented non-28

cortical areas and were set to be constant across subjects. The cortical thickness locations used corresponded29

to the vertices comprising an icosahedral approximation to a sphere in the FreeSurfer spherical atlas space30

that was used for anatomical inter-subject registration. This yielded a relatively low-resolution resampling31

of each subject’s thickness data, which was performed in order to reduce dimensionality to accommodate32

machine learning techniques, to improve estimates of local thickness by effectively averaging over small33

neighborhoods, and to allow for the expected small registration errors without destroying subject-to-subject34

feature correspondences.35

Cortical thickness has previously been shown to be a relevant biomarker in ADHD (e.g., Shaw et al.,36

2006; Makris et al., 2007). Many cortical thickness values were assigned relatively large feature weights (see37

Supplementary Materials) in the classifiers built using all features from all feature sets; the feature impact38

weights (see Methods) for ADHD-positive diagnosis for boys (Figure 4) and girls (Figure 5) were rendered39

on inflated cortical surface models for purposes of visualization. While some of the particular nodes assigned40

high impact are in areas previously shown to have differences in cortical thickness in subjects with ADHD,41
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in general the thickness impacts are distributed across cortex and not focused in one or a few brain areas,1

and thus are difficult to interpret succinctly in a biological context. Within the group of cortical thickness2

features with impacts at least two standard deviations above the median (i.e., those that were particularly3

important in diagnosis), ∼ 53% were in the right hemisphere in boys whereas only ∼ 42% were in the right4

hemisphere in girls.5

The caudate nucleus has been considered a structure of interest in ADHD due to reports of volume6

differences in patients (Castellanos et al., 1994). In our results, left and right caudate volume (normalized7

by intracranial volume) each were assigned high impact for ADHD diagnosis in girls (237th and 345th8

most highly impactful features, respectively, each of which represented an impact that was more than two9

standard deviations above the median feature impact weight for that class), but not in boys. We did not10

directly include measures of asymmetry (though in principle this could be computed implicitly by the existing11

classifier), which may be particularly useful, as it has been claimed that the degree of caudate asymmetry12

may reflect severity of ADHD symptoms in children (Schrimsher et al., 2002). The only other structure13

volume feature to receive similarly high impact was the volume of the right inferior lateral ventricle in boys,14

which ranked 450th in impact for the control class and 506th in impact for the ADHD-positive class. This15

feature did not rank highly for girls.16

Network features. Our corpus of network-based features included a variety of standard features found17

commonly in functional connectivity studies as well as a series of features drawn from other scientific domains18

or developed for this study. These included measures of small-worldness and scale-free properties, node-level19

connectivity or other measures of “importance” (using single path and parallel path measures), network20

separability, network sparsity, and network motifs. This broad base of network feature types allowed us21

to systematically examine the power of features by exploring which were selected and/or had large impact22

on the classification problem. Plots showing the mean and standard deviation feature impacts for each23

gender, calculated across categories of features (including both network and anatomical features) based on24

the classifier built using all features of all types is available in the Supplementary Materials.25

We calculated the set of network features after building rs-fMRI functional connectivity networks using26

three different methods: correlation (Corr), the inverse of the covariance matrix under L1-norm regulariza-27

tion to promote sparsity (SIC ), and Patel’s Kappa measure (Kappa). These network construction methods28

were chosen largely based on the results of Smith et al. (2011), as they were among the top performing29

methods in simulation studies for correctly inferring underlying connectivity (without direction). In the30

present results (see Table 3) we observed a rather clear advantage for using network measures derived from31

the SIC networks relative to the other two methods; this advantage was predicted by better overall results32

throughout cross-validation (particularly for large numbers of features), as well as better results on the sep-33

arate test set (AUC ≈ 0.71 vs. 0.67 for Corr networks and 0.61 for Kappa networks, when using all network34

features).35

Many network features were among those that had high impact weights for classifiers that used all features36

(with stratification by gender). Because each edge weight (of 6670 possible edges in the AAL network) was37

used as a feature, these tended to dominate lists of highly ranked features, but other derived network38

properties were also impactful. For convenience, we again examined impact weights that were greater than39

two standard deviations from the mean for that class. While individual features are difficult to interpret, a40

broad picture emerges pointing to a role for functional connectivity attributes involving multiple cerebellar41

areas and primarily frontal cortical areas, especially in the right hemisphere.42

Beyond individual edge weights, weighted node degrees (which are a measure of the overall estimated43

functional connectivity of that brain area with all other regions), and node betweenness (which can be44

thought of as a node’s importance if the network represents flow of information or activity) of frontal cortical45
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and cerebellar nodes often had high impact. The second most impactful feature for diagnosis of girls with1

ADHD was the degree of the left median cingulate cortex, while the impact of betweenness of that same2

node ranked fifth overall. Highly impactful node degree features were found within the cerebellum in both3

girls (right lobules III, VI, VIIB and Crus II; left lobule III; and vermal lobules I, II, and X) and boys (right4

cerebellum lobules VI and IX, vermal lobule III), as were node betweenness features (left lobule III; right5

lobule VI and Crus II, vermal lobules I, II, and X in girls; right lobule VI, vermal lobule III in boys). Yu-Feng6

et al. (2007) found that children with ADHD had reduced amplitude of low frequency fluctuations (in the7

approximate frequency band analyzed here) bilaterally in the cerebellar cortex and vermis, which might8

drive reductions in weights of the functional connections with cerebellar regions in our networks, resulting9

in differences in subtle group-level features like node degree or betweenness.10

Additional non-standard network features that had relatively high impact included central point dom-11

inance measures (e.g., in the left middle temporal pole, left middle and superior frontal cortex, and left12

superior occipital cortex in boys with ADHD), eccentricity measured by effective resistance (of the left pre-13

central gyrus in girls with ADHD) and a variety of network sparsity features. In particular, sparsity measures14

based on lexicographic, Dulmage-Mendelsohn, and approximate minimum degree orderings (without apply-15

ing an edge threshold) in girls with ADHD (and to a lesser extent boys with and without ADHD) were16

associated with relatively large feature impacts.17

Overall, performance for classifiers based on network features alone was somewhat lower than performance18

using non-imaging phenotypic features or anatomical features. This seems to indicate that the individually19

derived features may be somewhat noisy, and perhaps an even larger sample size will be required to develop20

more robust network feature based classifiers. It is possible that other derived features could hold substan-21

tially more predictive power than those used here, including, for example, additional measures of the degree22

of modularity or goodness or partitioning (e.g., Rubinov and Sporns, 2011), but the set of attributes we23

deployed was quite large and heterogeneous, for example including many features at both the local (node)24

level and the global (network) level.25

Another important consideration for network-level features, beyond the network construction method we26

explored here, is the definition of the brain regions that comprise nodes. In the current project we defined27

each node as an anatomical region-of-interest using the AAL volumetric brain atlas (Tzourio-Mazoyer et al.,28

2002), which is a macro-anatomical parcellation of the MNI-space single subject brain. Each ROI is then29

represented by a mean time course (after rs-fMRI preprocessing), which is assumed to be representative of30

regional activity. Smith et al. (2011) demonstrated, however, that improperly defined regions of interest can31

substantially degrade inference of connections (in any network construction method). Thus one avenue of32

further study to improve predictive power is to attempt to define regions of interest (and therefore rs-fMRI33

networks) in a more data-driven manner, perhaps by first clustering voxels into ROIs based on similarity of34

response.35

COMBINING FEATURE SETS36

Figure 3 demonstrates classifier performance (in both cross-validation and on the separate test set) for37

classifiers that were built using all available features for different combinations of feature sets (defined as38

non-imaging phenotype, anatomical, and network sets). The best overall performance in cross-validation,39

which should generally be predictive of performance on the separate test set, occurred for the classifier built40

from non-imaging phenotype features only. This result was surprising (and somewhat discouraging for efforts41

to base diagnosis on biological measurables from imaging data), but did not robustly generalize when results42

were assessed on the separate test set. In particular, generalization of the non-imaging features seemed43

relatively weak, whereas adding additional features from the imaging sets (in sufficient numbers) appeared44
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to improve the classifiers’ ability to generalize to new patient data. Adding only a small number of imaging1

features to the phenotype set actually degraded performance in almost all cases, but as features continued2

to be added, there was a slow, systematic increase in performance, generally reaching maximum when using3

all available features.4

As seen in Figure 3, the best overall performance on the test set came using an SVM that weighted5

all 12,000+ features across the three feature sets. It is somewhat unusual that such a large feature set6

(relative to the number of training examples / subjects) would provide optimal performance. We see this as7

an indication of the diffuse nature of ADHD. Our results make it clear that there is substantial predictive8

power in the set of features derived from either anatomical scans, resting state fMRI networks built from9

sparse inverse covariance estimates, or combinations of the two, but it also appears that, in general, no small10

set of these features can provide better predictions than the non-imaging phenotypic features on their own.11

Instead, predictions are honed and made more robust to new data by a combination of many features, each12

with small overall contributions to the final class prediction.13

Upon initial review, these results may bring into question the relative merits - particularly from a cost /14

benefit point of view - of using neuroimaging-derived characteristics for the clinical diagnosis of ADHD, and15

perhaps more generally for diagnosis of neuropsychiatric disorders. While our results indicate an improve-16

ment in AUC of less than ∼10% in new test subjects when incorporating imaging features (both anatomical17

and network features) above and beyond the non-imaging feature set, we feel that this is an important18

improvement. Because ADHD diagnosis is controversial (Wolraich, 1999), any added ability to point to19

objective, biological measures is of high potential significance. One major objective for algorithmic diagnosis20

of behaviorally-defined disorders is to find biomarkers that enable diagnosis in a manner that is indistin-21

guishable from a group of physicians. In this dataset we only have one diagnosis, which was presumably22

given by one physician or a small group of physicians, and thus we cannot relate our results to the variability23

that might exist in a set of blind diagnoses from a group of physicians. Thus while we do not feel that the24

current measures are ready for the clinic, the appearance of modest but highly significant improvements of25

diagnosis prediction based on imaging features gives hope for such methods serving as a diagnostic aid in26

the future.27

IMPORTANCE OF LARGE DATASETS28

The ADHD-200 dataset has provided a new opportunity to apply exploratory data analysis, data mining, and29

machine learning tools to the incredibly challenging problem of neuropsychiatric disorder diagnosis. While30

there is great value in meta-analyses across sets of previously conducted studies, computational scientists31

place great value in the ability to apply the same methods directly to commonly coded datasets made publicly32

available in a common format. To achieve results that would directly impact ADHD diagnosis, it may be33

important to collect data from even more subjects.34

We observed substantial differences in classifier performance across scan sites (Table 12); however, data35

were insufficient to properly train classifiers for each site, and we interpret these results cautiously due36

to relatively small numbers of examples. The variability in classifier performance by site may arise from37

at least two sources. First, it may reflect aspects of the patient populations that systematically differed38

by site. Furthermore, different sites used somewhat different acquisition protocols; standardizing these39

protocols and/or developing additional algorithmic methods to account for such differences may improve40

overall performance and reduce classifier differences across sites. The types of data assembled here would be41

well complemented with a variety of other measures, possibly including task-driven fMRI in, for example,42

set shifting or cognitive / inhibitory control tasks that highlight difficult patterns of behavior for subjects43

with ADHD. Further, ADHD has a significant genetic component (Faraone et al., 2005), and combining44
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genotype or gene expression information with possible endophenotypes from brain imaging (i.e., imaging1

genetics Durston et al., 2009) is a promising avenue that will also require collection of both brain imaging2

data using standardized protocols as well as genetic materials from a large number of patients and matched3

controls.4

CONCLUSION5

The overall framework presented here, which combines different feature sets, each processed in distinct6

software streams, provides a flexible and extensible means for studying diagnostic measures in large clinical7

datasets. While it was somewhat surprising that classifiers, in general, achieved best performance using all8

available features, this points to the distributed nature of pathology in complex neuropsychiatric disorders,9

while establishing the need to combine many diverse attributes for best outcomes. The general approach10

and set of features described here will be useful in future examinations of nervous system disorders and also11

potentially for predictions of various brain states based on functional connectivity networks in task-active12

fMRI.13
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