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Abstract—In this paper we introduce a method to produce a
subdivision of an anatomical atlas by taking into account the
similarity of resting state functional MRI time series with in
anatomically-defined regions of interest. This method differs
from others in that the resulting atlases are comparable across
subjects, making group analyses possible. Finally, we showthat
the functional connectivity matrices obtained with this method
can be used in a diagnostic classification task and that they
enhance a classifier’s ability to extract relevant information
from the data, leading to more interpretable prediction models
in the process.

I. I NTRODUCTION

Functional connectivity features have been used in multi-
ple diagnostic classification settings (e.g. Multiple Sclerosis
[1] or ADHD [2]). They are typically obtained by using an
atlas to partition the brain into regions of interest (ROIs),
computing the average time series in a resting state fMRI
(rs-fMRI) dataset for all the voxels in each ROI and deriving
a #ROIs×#ROIs functional connectivitymatrix. The atlas
plays two roles in this process: aggregating multiple time
series and reducing the data from each subject to a format
that can be compared across subjects.

The division of the brain is driven by anatomical and/or
histological concerns, in general, not functional activation
or the presence of structural connections between regions of
interest. Furthermore, each ROI is often large and, therefore,
its functional activation during resting state or performance
of a task could be quite heterogeneous.

These issues can affect functional connectivity measure-
ments between a pair of ROIs. First, the notion of an
“average” time series for a ROI is dubious if what is being
averaged are voxels engaged in processes with different
time series of activation. We could, for instance, have a
portion of an ROI A correlated with region B exclusively,
another with C exclusively, and the average of those portions
would be less correlated with B or C than each portion
was in reality. Conversely, knowing correlations are absent,
rather than partial, could be particularly useful for diagnostic
classification.

These concerns have led to the idea of producingin-
dividualized atlases where anatomical ROIs are divided
into functionally homogeneousparcels. This idea has been
explored by various groups, e.g. [3] proposes the use of

spectral clustering of rs-fMRI series, constrained by spatial
adjacency, to generate a finer grain atlas, and [4] uses short-
TR rs-fMRI and a notion of “stable seed” to grow a large of
number of regions that are then aggregated using spatially
constrained hierarchical clustering. Our work also entails the
production of individualized atlases, albeit usingmodularity
[5] over a neighbourhood graph for clustering voxels.

Our work differs from these in that we also propose a
simple approach – and extensions thereof – to make the
resulting individualized atlasescorrespond across subjects.
Furthermore, we validate this approach by showing that it
leads to sparser, fine-grained functional connectivity matri-
ces that allow for increased classification accuracy, despite
containing an order of magnitude more features than would
be obtained using the AAL atlas, and a more interpretable
classifier overall.

II. DATA

Structural 1 and resting state functional2 data were
collected at Ohio State University. The dataset underwent
standard preprocessing using FSL [6] and was then de-
trended, temporally filtered (0.009Hz < f < 0.08Hz) and
spatially smoothed (all steps as in [2]). The structural image
of each subject was registered to the MNI template using
fnirt. After excluding subjects who moved excessively, there
were 26 healthy controls and 46 MS patients.

III. O UR METHOD

The end result of this algorithm is a version of a source
atlas where all the ROIs have been divided into a data-driven
number of parcels that are functionally homogeneous to a
degree, yielding the same number of parcels in each subject.

A. Within-subject steps
1) register structural image to MNI template
2) mask the AAL atlas [7] with it to create a subject-

specific version

1Structural data: MPRAGE, 160 contiguous sagittal slices (TE/TR/TE
3.7/8.1/1005 ms) collected in an ascending fashion parallel to the AC-PC
and using a spoiled gradient sequence (240x240 mm FOV; 1 mm thick
slices, with a1× 1× 1 in-plane resolution) with a flip angle of 8 degrees.

2Resting state data: eyes open, T2*-weighted echo planar images (EPIs)
collected with TR/TE 2000/24 ms, flip angle=80 degrees, 37 slices, 3.44mm
isotropic voxel size, 180 volumes.



3) use same transformation to place functional data in
template space
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Figure 1. Division of a ROI into functional parcels.

We then segment each ROI into parcels whose voxels have
similar time series of activation in the resting state functional
data (Figure 1):

1) For each pair of spatially adjacent voxelsi andj in the
ROI (j lies anywhere in the 26-voxel cuboid around
i), compute the correlation between the time series of
voxel i and voxelj in the resting state dataset.

2) Create a graph with one node per voxel, with an edge
between any adjacent voxelsi and j. Label the edge
with a weight equal to the correlation between their
time series or 0, if that correlation is negative.

3) Use modularity to split this graph intocommunities,
subsets that are more closely connected to each other
than to the rest of the graph (with code from [5]).

4) The communities identified are sets of spatially con-
tiguous voxels and become the parcels into which the
ROI is subdivided.

Note that, at this stage of the algorithm, each ROI might
have a different number of parcels, depending on how many
subsets of highly correlated adjacent voxels it contains;
the number of parcels is determined automatically by the
modularity code, with no parameters to set.

B. Group-level steps

The second stage of the algorithm takes the subject-
specific atlases and the functionally-driven parcellations of
each ROI, and uses them to create a new, group-level
parcellation where 1) each ROI has the same number of
parcels acrossall subjects and 2) there is an established
correspondence between parcels inside the ROI. The algo-
rithm starts with subject-specific atlases, restricted to voxels
present in all subjects.

1) Equalize the number of parcels in each ROI across all
subjects:For each ROI, we determine the minimum number
of parcelsm that that ROI was divided into across all the
subjects being considered. For each subject, we re-cluster
the voxels in that ROI to yieldm parcels. We do this by
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Figure 2. Matching the ROI parcels in one of the subjects withthe ROI
parcels in a pivot subject.

identifying the smallest parcel and joining it to the smallest
of its adjacentparcels; this process is iterated until there are
exactlym parcels.

2) Establish a correspondence between the parcels:
We use a greedy algorithm to establish a correspondence
between the parcels of an ROI across subjects, illustrated in
Figure 2 for a 3-parcel ROI:

1) Identify apivot subject, one with the least difference
between the numbers of voxels in the largest and
smallest parcels; the goal is to minimize the chance
of having small parcels, as these are not good targets
for matching.

2) For each subject, find the bipartite matching between
the ROI parcels in the pivot subject (top left corner of
Figure 2) and the parcels in its ROI (top right corner
of Figure 2):

a) compute the spatial overlap fractions3 between
each of the parcels to match (right of Figure 2)
and the parcels in the pivot subject (top of
Figure 2); the3× 3 overlaps are depicted in the
center of Figure 2

b) match the parcels with the greatest spatial over-
lap, eliminate those from consideration, repeat
until all parcels have been matched

3) For each subject, renumber the parcels of the ROI so
that the parcels are in the same order as those in the
pivot subject.

The result, in each subject, is the desired individualized atlas
where parcels contain voxels with homogeneous time series

3Overlap is #both
#both+#xor, where#both is the number of voxels in both,

#xor is the number of voxels in one but not the other.
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Figure 3. top: the average matrices for controls and patients, as well as
their difference, using the AAL atlasbottom: same using the subdivided
AAL atlas

and parcels correspond across all the subjects in the group.
The process could be refined by using a more elabo-

rate function to score the matching between two parcels.
One possibility would be to aggregate spatial overlap, as
described above, and also afunctional connectivity profile
of the parcel with respect to all other ROIs in the original
atlas for that subject. This profile consists of the correlations
between the average time series of voxels in the parcel and
the average time series of all other ROIs in the brain; the
rationale is that two parcels correspond better – functionally
– if they display similar patterns of correlation (or lack
thereof) to other regions.

IV. EXPERIMENTS

A. Datasets

Using our method with the AAL atlas as a starting point
(116 ROIs) we obtained subject-specific atlases with 639
ROIs; we then used each atlas to produce functional con-
nectivity matrices for each subject, as follows. We calculated
the average rs-fMRI time series of all voxels in each ROI
and then the correlation between all pairs of ROIs, yieldinga
correlation matrix. We applied a Fisher z-transformation to
each matrix entry and tested the null hypothesis that the
corresponding correlation was 0. The resulting matrix of
p-values was thresholded using False Discovery Rate [8]
(q = 0.05) and entries were kept if their corresponding
p-value was significant, or 0 otherwise. Figure 3 shows
the average matrices for controls and patients, as well as
the differences between them, using the 116 and 639 ROI
atlases.

Given the matrix for a subject, the entries for each distinct
ROI pair becamefeatures, yielding anexamplevector. This
was done for every patient and control, and their respective
example vectors (and labels) became a dataset on which to
train and test a diagnostic classifier. The raw datasets had
6670 and 203841 features for the 116 and 639 ROI atlases,
respectively. Each feature that had a constant value across
all subjects – 0, typically – was eliminated, and thus the

Table II
TOP 10 HIGH-IMPACT ROIS, USING THE ORIGINAL (116 ROIS) AND

SUBDIVIDED (639 ROIS, P# IS THE PARCEL) ATLASES.

AAL (116) impact AALsub (639) impact
ParacentralLobule R 0.125 PostcentralL P2 L 0.088
Occipital Mid L 0.085 ParacentralLobule R P4 R 0.069
PostcentralL 0.060 PostcentralR P2 R 0.047
PostcentralR 0.059 PostcentralR P3 R 0.042
Temporal Inf R 0.053 Occipital Mid L P4 L 0.042
Parietal Sup R 0.045 Cingulum Ant R P2 R 0.042
Temporal Pole Mid L 0.044 PostcentralR P1 R 0.039
Occipital Inf R 0.042 Cingulum Ant L P2 L 0.038
Occipital Sup L 0.041 Occipital Inf L P2 L 0.032
Cerebelum8 R 0.040 PrecuneusL P1 L 0.031

final datasets had 4073 and 125967 features. Henceforth we
will refer to the datasets as AAL and AALsub.

B. Classification
We ran classification experiments for the AAL and AAL-

sub datasets. We used a linear SVM [9] with default pa-
rameters to make the prediction, in a leave-one-subject-of-
each-class-out cross-validation, with classes being “patients”
and “controls” [10]. We selected features in the training
set of each fold, using at-test to score each feature; the
number of features used was determined bynestedcross-
validation inside the training set, trying out 10, 25, 50, 100,
250, 500, 1000, 1500, 2000, 2500, 3000 or all features and
selecting the number leading to the best result (different
from fold to fold) 4. In Table I we report results using
the number of features determined through nested cross-
validation (#nested), as well as using each fixed number of
features, for comparison.

The measure of success used was classification accuracy,
i.e. the fraction of subjects whose diagnostic label was
predicted correctly when it was left out in cross-validation.
In order to maintain a balanced dataset, we sampled 26
patients from the 46 available and ran the cross-validation
procedure in the resulting 52 example dataset. This was done
30 times, sampling a different subset each time, and the
results reported were the average across those 30 samplings.
The nested cross-validation results were significantly better
than chance for either AAL or AALsub, and accuracy higher
for AALsub. Finally, and so as to exclude motion confounds,
we attempted to classify the two groups based on median
or maximum values across time of each subject’s 6 motion
correction parameters; the results were not above chance.

C. ROI impact

We determined theimpact of each ROI in providing the
information used by the classifier when successful5. For a
particular training and test set, the impact of eachfeature

4Note that in AALsub feature selection operates on two ordersof
magnitude more features than in AAL.

5We did this for the models obtained by using nested cross-validation to
select the number of features in each fold, so as not to pick a model that
was better by chance.



Table I
CLASSIFICATION ACCURACY RESULTS USING ORIGINALAAL ATLAS (116 ROIS) AND THE SUBDIVIDED AAL ATLAS (639 ROIS). CLASSIFIERS

WERE TRAINED USING VARIOUS FIXED NUMBERS OF FEATURES(#SELECTED), AS WELL USING ALL FEATURES AVAILABLE (#ALL ) AND A VARYING
NUMBER SELECTED USING NESTED CROSS-VALIDATION INSIDE THE TRAINING SET (#NESTED).

#selected 10 25 50 100 250 500 1000 1500 2000 2500 3000 all#nested
#ROIs #pairs total #features
116 6670 4073 0.70 0.69 0.72 0.73 0.81 0.82 0.83 0.82 0.81 0.80 0.75 0.700.80
639 203841 125967 0.71 0.81 0.81 0.81 0.84 0.87 0.88 0.90 0.90 0.90 0.90 0.770.86

Figure 4. top: ROI impact maps using AAL atlasbottom: ROI impact maps using the atlas produced with our method

was gauged by multiplying its linear SVM weight for the
correct class prediction in the test examples in each fold,
and averaging across examples. We then averaged feature
impact across the 30 samplings described above. Given that
each feature corresponds to a pair of ROIs, we calculated
the impact of a ROI by summing the impact across all
features corresponding to pairs involving that ROI. We then
normalized the ROI impact vector to add up to 1.

Table II shows the top 10 ROIs with the highest impact
for AAL and AALsub. Figure 4 shows the voxels in each
ROI colored by their impact values. Note how the AALsub
map is far sparser than that for AAL, and how high impact
values in AAL ROIs can become localized to small parcels
of those ROIs; the maps coincide well around the central
sulcus, in particular.

V. CONCLUSIONS

Our results indicate that our method produces an atlas
subdivision that leads to cleaner functional connectivity
features, in the sense that they are both sparser and more
informative than the ones based on the original atlas. This
translates into being able to narrow down informative loca-
tions more precisely; the fact that somato-motor regions have
high impact makes sense given the significant alterations
seen in these regions both during exogenous processing and
endogenous processing in MS patients [11].
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