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Abstract—In this paper we introduce a method to produce a  spectral clustering of rs-fMRI series, constrained by igpat
subdivision of an anatomical atlas by taking into account tle adjacency, to generate a finer grain atlas, and [4] uses-short
similarity of resting state functional MRI time series within TR rs-fMRI and a notion of “stable seed” to grow a large of
anatomically-defined regions of interest. This method difrs . . .
from others in that the resulting atlases are comparable aass number_ of reQ'O”S that are the_n aggregated using SPa“a”y
subjects, making group analyses possible. Finally, we shatvat constrained hierarchical clustering. Our work also estiié
the functional connectivity matrices obtained with this mehod production of individualized atlases, albeit usimgpdularity

can be used in a diagnostic classification task and that they [5] over a neighbourhood graph for clustering voxels.
enhance a classifier's ability to extract relevant informaion Our work differs from these in that we also propose a

from the data, leading to more interpretable prediction models simple approach — and extensions thereof — to make the
in the process. Co . .
resulting individualized atlasesorrespond across subjects
l. INTRODUCTION Furthermore, we validate this approach by showing that it

Functional connectivity features have been used in muIti—lealdS to sparser, fine-grained functional connectivityrmat

ple diagnostic classification settings (e.g. Multiple Sati ces that allow for increased classification accuracy, dgespi

X . . containing an order of magnitude more features than would
[1] or ADHD.[.ZD' They are _typlcally_ obtalne_d by using an be obtained using the AAL atlas, and a more interpretable
atlas to partition the brain into regions of interest (ROQIS) e
. . A : flassn‘ler overall.
computing the average time series in a resting state fMR
(rs-fMRI) dataset for all the voxels in each ROI and deriving 1. DATA

a #ROIsx #ROls functional connectivitynatrix. The atlas Structural ! and resting state functiona data were
plays two roles in this process: aggregating multiple timecollected at Ohio State University. The dataset underwent
series and reducing the data from each subject to a formagtandard preprocessing using FSL [6] and was then de-
that can be compared across subjects. . trended, temporally filteredd(009Hz < f < 0.08Hz) and
The division of the brain is driven by anatomical and/or gpatially smoothed (all steps as in [2]). The structuralgma
histological concerns, in general, not functional actert of each subject was registered to the MNI template using

or the presence of structural connections between regibns girt. After excluding subjects who moved excessively, there
interest. Furthermore, each ROl is often large and, thezefo \yere 26 healthy controls and 46 MS patients.

its functional activation during resting state or perfonoa
of a task could be quite heterogeneous. Il. OUR METHOD
These issues can affect functional connectivity measure- The end result of this algorithm is a version of a source

ments between a pair of ROIs. First, the notion of anatlas where all the ROIs have been divided into a data-driven
“average” time series for a ROI is dubious if what is beingnumber of parcels that are functionally homogeneous to a
averaged are voxels engaged in processes with differemtegree, yielding the same number of parcels in each subject.
time series of activation. We could, for instance, have
portion of an ROI A correlated with region B exclusively,
another with C exclusively, and the average of those pastion
would be less correlated with B or C than each portion
was in reality. Conversely, knowing correlations are ahsen
rather than partial, could be particularly useful for diagtic 1Structural data: MPRAGE, 160 contiguous sagittal sliceE/TR/TE

classification. 3.7/8.1/1005 ms) collected in an ascending fashion parallithe AC-PC
These concerns have led to the idea of produdmg and using a spoiled gradient sequence (240x240 mm FOV; 1 riuk th

dividualized atlases where anatomical ROIs are dividedslices, with al x 1 x 1 in-plane resolution) with a flip angle of 8 degrees.
2Resting state data: eyes open, T2*-weighted echo planayesnéEPIs)

Into funCt|0naIIy _homogeneoqsarcels. This idea has been collected with TR/TE 2000/24 ms, flip angle=80 degrees, Bes) 3.44mm
explored by various groups, e.g. [3] proposes the use agotropic voxel size, 180 volumes.

. Within-subject steps

1) register structural image to MNI template

2) mask the AAL atlas [7] with it to create a subject-
specific version



3) use same transformation to place functional data in
template space Fﬂ
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Figure 1. Division of a ROI into functional parcels. I:l I:l

pivot parcel that matches
(highest overlap)

We then segment each ROl into parcels whose voxels have
similar time series of activation in the resting state fimtdl  Figure 2. Matching the ROI parcels in one of the subjects With ROI
data (Figure 1): parcels in a pivot subject.

1) For each pair of spatially adjacent voxelsnd; in the

ROI (5 lies anywhere in the 26-voxel cuboid around .

i), compute the correlation between the time series OItdentifying the smallest parcel and joining it to the smsille
V(;X8|i and voxelj in the resting state dataset of its adjacentparcels; this process is iterated until there are

; ; xactlym parcels.
2) tCJ:ertevséeer? g;?/p;l d\;\gf;zr?tn\?oi(;jd;npde;_vf:ggv'llrlltz :(rngeedgg 2) Establish a correspondence between the parcels:

. : . . We use a greedy algorithm to establish a correspondence
with a weight equal to the correlation between their g y a9 . esp .
: ; . O : between the parcels of an ROI across subjects, illustrated i
time series or 0, if that correlation is negative. . .

Figure 2 for a 3-parcel ROI:

3) Use modularity to split this graph intcommunities 1) Identify apivot subject one with the least difference
subsets that are more closely connected to each other between the numbers of voxels in the largest and

than to the rest of the graph (with code from [5]). ) . CL
R > . smallest parcels; the goal is to minimize the chance
4) The communities identified are sets of spatially con- .
of having small parcels, as these are not good targets

tiguous voxels and become the parcels into which the .
for matching.

Not I?hOlt 'S tSltJr?.dM?ed' f the algorith h ROI miaht 2) For each subject, find the bipartite matching between
ote that, at this stage of the aigorithm, eac mg the ROI parcels in the pivot subject (top left corner of

have a d|ﬁerent number of parcel_s, depending on how m.a”}’ Figure 2) and the parcels in its ROI (top right corner
subsets of highly correlated adjacent voxels it contains; of Figure 2):

the number of parcels is determined automatically by the . .
P y by a) compute the spatial overlap fractiohdetween

modularity code, with no parameters to set. ) ;
each of the parcels to match (right of Figure 2)

B. Group-level steps and the parcels in the pivot subject (top of
The second stage of the algorithm takes the subject- Figure 2); the3 x 3 overlaps are depicted in the
specific atlases and the functionally-driven parcellatiof center of Figure 2
each ROI, and uses them to create a new, group-level b) match the parcels with the greatest spatial over-
parcellation where 1) each ROI has the same number of lap, eliminate those from consideration, repeat
parcels acrossll subjects and 2) there is an established until all parcels have been matched
correspondence between parcels inside the ROI. The algo- 3) For each subject, renumber the parcels of the ROI so
rithm starts with subject-specific atlases, restrictedaxels that the parce|s are in the same order as those in the
present in all subjects. pivot subject.

1) qualize the number of parcels in each ROI across allryg regylt, in each subject, is the desired individualiztasa
subjects:For each ROI, we determine the minimum number, here parcels contain voxels with homogeneous time series
of parcelsm that that ROl was divided into across all the

subjects being considered. For each subject, we re-clustersoveriap is#09t__ \where#both is the number of voxels in both,
the voxels in that ROI to yieldn parcels. We do this by #axor is the number of voxels in one but not the other.



controls patients difference Table Il
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7040 00 80,100 20 A(San?r\l:l) 100 7040 00 80100 Occipital Mid_L 0.085 | ParacentralLobule R_ P4 R  0.069
1 1 05 Postcentrall 0.060 | PostcentralR_P2 R 0.047
100 05 100 0s 100 PostcentralR 0.059 | PostcentralR_P3 R 0.042
- , - , o , Temporal Inf_R 0.053 | Occipital Mid_L_P4 L 0.042
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500 - 05 500 Temporal Pole Mid_L 0.044 | PostcentralR_P1 R 0.039
o M, o L, o WS Occipital_Inf_R 0.042 | Cingulum Ant_L_P2 L 0.038
Occipital Sup L 0.041 | Occipital Inf_L_P2 L 0.032
Cerebelum8_R 0.040 | PrecuneusL_P1 L 0.031

Figure 3. top: the average matrices for controls and patients, as well as
their difference, using the AAL atlabottom: same using the subdivided

AAL atlas final datasets had 4073 and 125967 features. Henceforth we
will refer to the datasets as AAL and AALsub.

and parcels correspond across all the subjects in the grouB. Classification

The process could be refined by using a more elabo- \ve ran classification experiments for the AAL and AAL-
rate function to score the matching between two parcelssyp datasets. We used a linear SVM [9] with default pa-
One possibility would be to aggregate spatial overlap, agameters to make the prediction, in a leave-one-subject-of
described above, and alsofanctional connectivity profile  each-class-out cross-validation, with classes beingept’
of the parcel with respect to all other ROIs in the original ang “controls” [10]. We selected features in the training
atlas for that SubjeCt. This profile consists of the coriefet set of each f0|d, using a-test to score each feature; the
between the average time series of voxels in the parcel angumber of features used was determinednigtedcross-
the average time series of all other ROIs in the brain; the,zlidation inside the training set, trying out 10, 25, 50010
rationale is that two parcels correspond better — functigna 250 500, 1000, 1500, 2000, 2500, 3000 or all features and
— if they display similar patterns of correlation (or lack selecting the number leading to the best result (different
thereof) to other regions. from fold to fold) 4. In Table | we report results using
the number of features determined through nested cross-
validation (#nested), as well as using each fixed number of

A. Datasets features, for comparison.
The measure of success used was classification accuracy,

(116 ROIs) we obtained subject-specific atlases with 639 t_he fraction of SUbJe.CtS whose d|ggnostlc Iapel was
ROIs; we then used each atlas to produce functional co predicted correctly when it was left out in cross-validatio

nectivity matrices for each subject, as follows. We caltda n Qrder to maintain a palanced dataset, we sampled_26
the average rs-fMRI time series of all voxels in each rojPatients from the 46 available and ran the cross-validation

and then the correlation between all pairs of RO, yielding procedure in the resulting 52 example dataset. This was done

correlation matrix. We applied a Fisher z-transformation t 36053;262’ (S)?trg(fwe%eathcgﬁae\:eeg Zufsritssﬁﬁgsgrgg’szgd l;[:es
each matrix entry and tested the null hypothesis that th P 9 piing

corresponding correlation was 0. The resulting matrix of he nested cross_-validation results were significantlygbet
p-values was thresholded using False Discovery Rate [8§han chance fpr either AAL or AALsub, and accuracy higher
(¢ = 0.05) and entries were kept if their corresponding or AALsub. Finally, and so as to exclude motion confounds,

p-value was significant, or 0 otherwise. Figure 3 showswrer:;;eimEid\l;?uglsai'zs;hingvgoogre(;lﬁsszfgg,;g rr:ggl;?
the average matrices for controls and patients, as well a2 )

the differences between them, using the 116 and 639 R(ﬁorrectlon parameters; the results were not above chance.
atlases. C. ROI impact

Given the matrix for a subject, the entries for each distinct \ye determined thémpactof each ROI in providing the
ROI pair becamédeatures yielding anexamplevector. This  jnformation used by the classifier when successfufor a

was done for every patient and control, and their respectiv@articular training and test set, the impact of edeature
example vectors (and labels) became a dataset on which to
train and test a diagnostic classifier. The raw datasets had*Note that in AALsub feature selection operates on two ordgfrs
6670 and 203841 features for the 116 and 639 ROI atlase§2dnitude more featres than in AAL. o

ivelv. Each feature that had a constant value acro We did this for the models qbtalned by using nested cr(_)sdamjn to
respectively. Eac SSlect the number of features in each fold, so as not to piclodeirthat

all subjects — 0, typically — was eliminated, and thus thewas better by chance.

IV. EXPERIMENTS

Using our method with the AAL atlas as a starting point .



Table |

CLASSIFICATION ACCURACY RESULTS USING ORIGINALAAL ATLAS (116 ROK) AND THE SUBDIVIDED AAL ATLAS (639 ROK). CLASSIFIERS

WERE TRAINED USING VARIOUS FIXED NUMBERS OF FEATURE$#SELECTED), AS WELL USING ALL FEATURES AVAILABLE (#ALL) AND A VARYING
NUMBER SELECTED USING NESTED CROSSALIDATION INSIDE THE TRAINING SET (#NESTED).

#selected 10 25 50 100 250 500 1000 1500 2000 2500 3000 ali#nested |
#ROls  #pairs total #features
116 6670 4073 070 069 072 073 081 082 083 082 081 080 075 0.700.80
639 203841 125967 071 081 081 081 084 087 08 09 090 090 090 0.770.86
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Figure 4. top: ROI impact maps using AAL atlasottom: ROI impact maps using the atlas produced with our method

was gauged by multiplying its linear SVM weight for the

correct class prediction in the test examples in each fold,
and averaging across examples. We then averaged featur

impact across the 30 samplings described above. Given

tha

each feature corresponds to a pair of ROIs, we calculated

the impact of a ROl by summing the impact across

all

[8] R. Craddock, G. James, P. Holtzheimer Ill, X. Hu, and

H. Mayberg, “A whole brain fmri atlas generated via spagiall
constrained spectral clusteringfuman brain mapping2011.

4] T. Blumensath, T. E. Behrens, and S. M. Smith, “Restitajes

fmri single subject cortical parcellation based on regioowng
ing,” in Medical Image Computing and Computer-Assisted
Intervention—-MICCAI 2012 Springer, 2012, pp. 188—195.

features corresponding to pairs involving that ROI. We then [5] V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre,

normalized the ROI impact vector to add up to 1.

Table Il shows the top 10 ROIs with the highest impact
for AAL and AALsub. Figure 4 shows the voxels in each

ROI colored by their impact values. Note how the AALsub [6]

map is far sparser than that for AAL, and how high impact
values in AAL ROIs can become localized to small parcels
of those ROIs; the maps coincide well around the central

sulcus, in particular.

V. CONCLUSIONS

[7]

Our results indicate that our method produces an atlas
subdivision that leads to cleaner functional connectivity

features, in the sense that they are both sparser and more

informative than the ones based on the original atlas. This
translates into being able to narrow down informative loca-

tions more precisely; the fact that somato-motor regione ha

high impact makes sense given the significant alterations
seen in these regions both during exogenous processing and

endogenous processing in MS patients [11].
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